基于增材制造的多层金字塔点阵夹芯板抗压缩性能
Compressive Behavior of Sandwich Panels with Multilayer Pyramidal Truss Cores by Additive Manufacturing
查看参考文献15篇
文摘
|
基于增材制造工艺制备多层金字塔点阵夹芯板,并根据标准测试方法进行准静态平压破坏实验,得到多层金字塔点阵结构的抗压缩强度。结果表明:制备的金字塔点阵结构抗压缩性能的稳定性非常好,载荷-位移曲线变化规律基本一致;试件的点阵胞元节点处首先进入塑性,之后中间两层点阵在节点处发生断裂,试件平压强度的平均值为6.72 MPa;由于成型工艺的限制,杆件“背面”质量较差,实际杆件的直径小于理论值,导致平压强度的实验结果小于理论和仿真分析值;理想化假设导致理论分析的平压强度结果与实验结果相差较大,而仿真结果与实验结果误差较小,可以控制在20%左右,满足工程精度要求;通过对比载荷-位移曲线和典型载荷下的结构变形情况可知,仿真分析可以较准确预测该点阵结构的压缩行为。 |
其他语种文摘
|
Sandwich panels with multilayer pyramidal truss cores were manufactured by additive manufacturing. The compressive resistance and destructive behavior were obtained by test under compressive load. The experimental results show that the compressive behavior is very stable, and the load-displacement curves show the same change regulation. The node regions of pyramidal lattice emerge plastic deformation firstly with the increase of compressive load, and then several fractures occur at the node regions of the middle two layers. The average compressive strength of the sandwich panels with multilayer pyramidal truss cores is 6.72 MPa. The molding quality of the back of pyramidal truss is bad owing to the restriction of the technology, so the radius of the truss is smaller than theoretical value. The experimental compressive strength is smaller than theoretical value and simulation calculation value. The compressive strength by theoretical analysis is higher than experimental value because of idealized assumption; while the simulation calculation result agrees with experimental result, the error is around 20%. Comparing the loaddisplacement curves and deformation, the simulation calculation method will exactly calculate the compressive resistance and destructive behavior of sandwich panels with multilayer pyramidal truss cores. |
来源
|
航空材料学报
,2018,38(3):77-82 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2017.000036
|
关键词
|
增材制造工艺
;
金字塔点阵结构
;
压缩性能
;
实验与仿真
|
地址
|
上海宇航系统工程研究所, 上海, 201109
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6257753
|
参考文献 共
15
共1页
|
1.
吴林志. 新型复合材料点阵结构的研究进展.
力学进展,2012,42(1):41-67
|
CSCD被引
30
次
|
|
|
|
2.
张钱城. 轻质高强点阵金属材料的制备及其力学性能强化的研究进展.
力学进展,2010,40(2):157-169
|
CSCD被引
16
次
|
|
|
|
3.
Evans A G. The topological design of multifunctional cellular metals.
Progress in Materials Science,2001,46:309-327
|
CSCD被引
125
次
|
|
|
|
4.
王兵. 碳纤维增强金字塔点阵夹芯结构的抗压缩性能.
复合材料学报,2010,27(1):133-138
|
CSCD被引
7
次
|
|
|
|
5.
熊健. 碳纤维复合材料金字塔点阵结构制备工艺及力学性能研究.
固体力学学报,2011,32(1):8-13
|
CSCD被引
6
次
|
|
|
|
6.
钱海峰. 金字塔点阵夹芯板单元结构准静态压缩性能研究.
中国舰船研究,2013,8(5):46-51
|
CSCD被引
5
次
|
|
|
|
7.
Lim J H. Mechanical behavior of sandwich panels with tetrahedral and kagome truss cores fabricated from wires.
International Journal of Solids and Structures,2006,43(17):5228-5246
|
CSCD被引
8
次
|
|
|
|
8.
Mckown S. The quasi-static and blast loading response of lattice structures.
International Journal of Impact Engineering,2008,35(8):795-810
|
CSCD被引
12
次
|
|
|
|
9.
Gumruk R. Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions.
Materials Science & Engineering:A,2013,586(8):392-406
|
CSCD被引
8
次
|
|
|
|
10.
Hyun S. Simulated properties of kagome and tetragonal truss core panels.
International Journal of Solids and Structures,2003,40:6989-6998
|
CSCD被引
18
次
|
|
|
|
11.
张钱城. X型超轻点阵结构芯体(Ⅰ):概念的提出、材料制备及实验.
中国科学E辑:技术科学,2009,39(6):1039-1046
|
CSCD被引
6
次
|
|
|
|
12.
张钱城. X型超轻点阵结构芯体(Ⅱ):细观力学建模与结构分析.
中国科学E辑:技术科学,2009,39(7):1216-1225
|
CSCD被引
5
次
|
|
|
|
13.
张学军. 3D打印技术研究现状和关键技术.
材料工程,2016,44(2):122-128
|
CSCD被引
114
次
|
|
|
|
14.
Li P. Deformation behavior of stainless steel microlattice structures by selective laser melting.
Materials Science & Engineering:A,2014,614(5):116-121
|
CSCD被引
8
次
|
|
|
|
15.
Smith M. Finite element modeling of the compressive response of lattice structures manufactured using the selective laser melting technique.
International Journal of Mechanical Sciences,2013,67(1):28-41
|
CSCD被引
17
次
|
|
|
|
|