增材制造超材料及其隐身功能调控的研究进展
Additive Manufacture of Metamaterials: a Review
查看参考文献60篇
文摘
|
超材料作为一种新型拓扑优化设计的结构材料,展现出特殊的物理性质,比如负泊松比、负折射率等,在波动控制和隐身方面有重要的潜在应用价值,因此受到国内外的广泛关注。增材制造技术,又称为3D打印技术,适合于制造复杂形状的结构,利用增材制造技术制造隐身超材料具有较高的几何自由度和尺寸精度,为超材料的广泛应用提供技术条件。本文基于超材料的基本概念,对隐身超材料结构设计、功能调控的研究进展进行详细介绍,进一步介绍增材制造隐身超材料的光固化法、熔融沉积法、激光选区烧结/熔化法等工艺方法,并讨论了增材制造超材料在制造过程中存在的阶梯效应、原材料黏附现象、热扩散现象、尺寸精度、粗糙度等问题。 |
其他语种文摘
|
As a novel structural material proposed by topology optimization, metamaterials present unusual properties, such as negative Poisson's ratio, negative indexofrefraction and so on. Metamaterials have potential application in the aspect of wave controlling and stealth. Therefore, it has aroused great interests in the world. Additive manufacturing technology, also called 3D printing technology, is suitable to make structures with complicated geometries. It is a high geometric freedom to fabricate stealth metamaterials via additive manufacturing technology, which provides technical support for the wide applications. The design of structure and the theory of stealth are both mentioned based on the basic theory of metamaterial. Moreover, a variety of additive manufacturing processes for the preparation of stealth metamaterials, such as light curing method, fusion deposition method, laser selective sintering / melting method are described in detail in the present paper. Problems, for instance, the staircase effect, raw material adhesion, thermal diffusivity, dimensional accuracy and roughness occurred in the fabrication of additive manufacturing metamaterials are discussed in order to provide references for the follow-up researchers. |
来源
|
航空材料学报
,2018,38(3):10-19 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2018.001009
|
关键词
|
超材料
;
结构设计
;
增材制造
;
隐身功能
|
地址
|
华中科技大学, 材料成形与模具技术国家重点实验室, 武汉, 430074
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金面上项目
|
文献收藏号
|
CSCD:6257743
|
参考文献 共
60
共3页
|
1.
Karpove G. Structural metamaterials with Saint-Venant edge effect reversal.
Acta Materialia,2017,123:245-254
|
CSCD被引
1
次
|
|
|
|
2.
Moitra P. Realization of an all-dielectric zero-index optical metamaterial.
Nature Photonics,2013,7(10):791-795
|
CSCD被引
41
次
|
|
|
|
3.
Liu C. Equivalent energy level hybridization approach for high-performance metamaterials design.
Acta Materialia,2017,135:144-149
|
CSCD被引
2
次
|
|
|
|
4.
Zhao Y. Alignment-free three-dimensional optical metamaterials.
Advanced Materials,2014,26(9):1439
|
CSCD被引
4
次
|
|
|
|
5.
礼嵩明. “超材料”结构吸波复合材料技术研究.
材料工程,2017,45(11):10-14
|
CSCD被引
15
次
|
|
|
|
6.
于相龙. 智能超材料研究与进展.
材料工程,2016,44(7):119-128
|
CSCD被引
21
次
|
|
|
|
7.
张勇. 超材料在完美吸波器中的应用.
材料工程,2016,44(11):120-128
|
CSCD被引
7
次
|
|
|
|
8.
Landy N I. Perfect metamaterial absorber.
Physical Review Letters,2008,100(20):207402
|
CSCD被引
476
次
|
|
|
|
9.
Tang B. Wide-angle polarization-independent broadband absorbers based on concentric multi-split ring arrays.
IEEE Photonics Journal,2017,PP(99):1-1
|
CSCD被引
1
次
|
|
|
|
10.
Wang B X. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber.
IEEE Photonics Technology Letters,2014,26(2):111-114
|
CSCD被引
12
次
|
|
|
|
11.
Chaurasiya D. Compact multi-band polarisation-insensitive metamaterial absorber.
Iet Microwaves Antennas & Propagation,2016,10(1):94-101
|
CSCD被引
4
次
|
|
|
|
12.
Landy N I. Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging.
Physical Review B:Condensed Matter & Materials Physics,2009,79(12):13
|
CSCD被引
1
次
|
|
|
|
13.
田小永. 三维超材料制造技术现状与趋势.
光电工程,2017,44(1):69-76
|
CSCD被引
11
次
|
|
|
|
14.
Cheng Q. An omnidirectional electromagnetic absorber made of metamaterials.
New Journal of Physics,2010,12(6):063006.11
|
CSCD被引
1
次
|
|
|
|
15.
Yin M. A broadband and omnidirectional electromagnetic wave concentrator with gradient woodpile structure.
Optics Express,2013,21(16):19082-19090
|
CSCD被引
6
次
|
|
|
|
16.
Pendry J B. Controlling electromagnetic fields.
Science,2006,312(5781):1780
|
CSCD被引
479
次
|
|
|
|
17.
Leonhardt U. Optical conformal mapping.
Science,2006,312(5781):1777
|
CSCD被引
229
次
|
|
|
|
18.
Schurig D. Metamaterial electromagnetic cloak at microwave frequencies.
Science,2006,314(5801):977-980
|
CSCD被引
484
次
|
|
|
|
19.
Li J. Hiding under the carpet:a new strategy for cloaking.
Physical Review Letters,2008,101(20):203901
|
CSCD被引
70
次
|
|
|
|
20.
Yin M. Free-space carpetcloak based on gradient index photonic crystals in metamaterial regime.
Applied Physics Letters,2012,100(12):1780
|
CSCD被引
1
次
|
|
|
|
|