基于稳定同位素的海河源区地下水与地表水相互关系分析
Relationship Between Groundwater and SurfaceWater Based on Environmental Isotope and Hydrochemistry in Upperstream of the Haihe River Basin
查看参考文献28篇
文摘
|
对海河流域源区的丰、枯水期降水、地下水、河水进行取样测试,分析了海河源区不同水体氢氧稳定同位素组成及水化学的时空分布特征,同时运用同位素二元混合模型对典型采样点地表水地下水间的相互作用进行了定量分析。结果表明:①丰水期地下水及地表水δD和δ~(18)O及总溶解性固体(TDS)表现出显著的空间差异性,而枯水期只有地下水的同位素组成及水化学特性表现出空间差异。②研究区的地下水水化学类型以Ca-HCO_3·SO_4、Ca-HCO_3型为主,丰水期河水与地下水化学类型较为相似,枯水期地下水化学类型与同时期的河水及大气降水的水化学类型存在显著的差异,说明枯水期地表水与地下水之间的转化关系不明显。Gibbs分析结果表明,控制海河源区水体化学性质的主要影响为岩石风化作用。③枯水期地下水受其他水体影响较弱,而丰水期河水及大气降水对地下水具有显著的补给作用,3个源流区中西源的地表河水对地下水影响最显著。 |
其他语种文摘
|
The surface water and groundwater are very important for the farmland irrigation, industrial production and living water. Normally, there is transformation relationship between the surface water and groundwater. The mechanism of transformation relationship between surface water and shallow groundwater is a key factor role for the regional water cycle and the formation and management of water recourse. The Haihe River is an important river of the northern China. The water crisis caused by over exploitation for the groundwater has become the most important limiting factor for the development of the regional economy. This research based on the δ~(18)O, δD and chemical data of different water samples of two sampling events were collected from the southern upstream of the Haihe River Basin (headstream of the Zhanghe River). We analyzed the hydrochemical and isotopic characteristic of groundwater and surface water during the two seasons by using the methods of study statistics, spatial interpolation analysis, Gibbs and Piper third-line graphs. Based on the two element mixed isotope hydrology separate model, we quantitative analysis the transformation relationship between groundwater and surface water for some sampling sites. The results shown that: 1) δ~(18)O, δD and TDS of groundwater and surface river water samples of the headstream of Zhanghe River during wet season have significant variation. However, in the dry season, only the δ~(18)O, δD and TDS of groundwater show the significant variation. 2) Whether wet season or dry season, the mainly water type are the Ca-HCO_3·SO_4 and the Ca-HCO_3 for the shallow groundwater in the headstream of the Zhanghe River of upstream of the Haihe River Basin. The river water chemical type has significant season variation. The water type of river water were Ca-HCO_3 changed to Na-Cl type during wet season, in wet season, due to the stronger evaporation, the river water chemical type were Ca.Na-Cl type. In wet season, the water type of river water and groundwater are similar and further indicate the conversion between the surface water and groundwater. There is obviously different between the water chemical type for precipitation, river water and groundwater during the dry season of headstream of the Zhanghe River. The results of Gibbs analysis shown, the groundwater and river water were controlled by the interaction between rock and water. 3) In dry season, the groundwater and river water have not significant interaction, however, the groundwater and river water shown strong transformation during wet season. About 10.95%-82.90% groundwater discharge from river water and the mean about 48.72%. Western headstream of the Haihe River shown larger interaction between groundwater and river water. The knowledge of these can promote effective management of water resources, and add new trace element data to the world water geochemistry. |
来源
|
地理科学
,2018,38(5):790-799 【核心库】
|
DOI
|
10.13249/j.cnki.sgs.2018.05.017
|
关键词
|
环境同位素
;
水化学
;
海河流域源区
;
地下水地表水转化
|
地址
|
山西师范大学地理科学学院, 山西, 临汾, 041000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0690 |
学科
|
自然地理学 |
基金
|
中国科学院农业水资源重点实验室开放基金
;
中国博士后科学基金
|
文献收藏号
|
CSCD:6255008
|
参考文献 共
28
共2页
|
1.
王中根. 海河流域地表水与地下水耦合模拟.
地理科学进展,2011,30(11):1345-1353
|
CSCD被引
17
次
|
|
|
|
2.
Winter. Recent advances in understanding the interaction of groundwater and surface water.
Review of Geophysics,1995,33:985-994
|
CSCD被引
21
次
|
|
|
|
3.
Tim C. Stream-groundwater exchange and hydrologic turnover at the network scale.
Water Resources Research,2011,47(12):1-11
|
CSCD被引
2
次
|
|
|
|
4.
Guo Y. Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe river basin, China: 1. Model and validation.
Journal of Hydrology,2015,528(2):206-216
|
CSCD被引
7
次
|
|
|
|
5.
Guo Y. Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe river basin, China: 2. Trends and implications to water resources.
Journal of Hydrology,2015,527(2):251-261
|
CSCD被引
5
次
|
|
|
|
6.
房晓君.
漳河上游地表水与地下水相互作用规律研究,2014
|
CSCD被引
1
次
|
|
|
|
7.
贾绍凤. 海河流域水资源安全评价.
地理科学进展,2003,22(4):379-387
|
CSCD被引
22
次
|
|
|
|
8.
刘春蓁. 近50年海河流域径流的变化趋势研究.
应用气象学报,2004,15(4):385-39
|
CSCD被引
47
次
|
|
|
|
9.
刘家宏. 海河流域二元水循环模式及其演化规律.
科学通报,2010,55(6):512-521
|
CSCD被引
25
次
|
|
|
|
10.
袁瑞强. 白洋淀渗漏对周边地下水的影响.
水科学进展,2012,23(6):751-756
|
CSCD被引
18
次
|
|
|
|
11.
王桃良. 地表水渗漏对娘子关岩溶泉泉水水质的影响.
水文,2015(5):41-45
|
CSCD被引
7
次
|
|
|
|
12.
张济世. 河西内陆河地表水与地下水转化及水资源利用率研究.
冰川冻土,2001,23(4):375-382
|
CSCD被引
23
次
|
|
|
|
13.
宋献方. 基于氢氧同位素的岔巴沟流域地表水-地下水转化关系研究.
应用基础与工程科学学报,2009,17(1):8-20
|
CSCD被引
36
次
|
|
|
|
14.
王亚俊. 北京东南郊再生水灌区不同水体氢氧同位素特征及成因.
地理研究,2017,36(2):361-372
|
CSCD被引
10
次
|
|
|
|
15.
于静洁. 基于δD和δ~(18)O及水化学的永定河流域地下水循环特征解析.
自然资源学报,2007,22(3):415-423
|
CSCD被引
28
次
|
|
|
|
16.
姚天次. 湘江流域岳麓山周边地区不同水体中氢氧稳定同位素特征及相互关系.
自然资源学报,2016,31(7):1198-1210
|
CSCD被引
18
次
|
|
|
|
17.
邓文平. 北京西山鹫峰地区氢氧稳定同位素特征分析.
水科学进展,2013,24(5):642-650
|
CSCD被引
31
次
|
|
|
|
18.
宋献方. 基于氢氧同位素与水化学的潮白河流域地下水水循环特征.
地理研究,2007,26(1):11-21
|
CSCD被引
49
次
|
|
|
|
19.
Wang S. Hydrochemical and isotopic characteristics of groundwater in the Yanqi basin of Xinjiang province, Northwest China.
Environmental Earth Sciences,2014,71(1):427-440
|
CSCD被引
3
次
|
|
|
|
20.
Huang T. Changes in groundwater induced by water diversion in the lower Tarim river, Xinjiang Uygur, NW China: Evidence from Environmental Isotopes and Water Chemistry.
Journal of Hydrology,2010,387:188-201
|
CSCD被引
9
次
|
|
|
|
|