Q345钢预热时间对熔结环氧粉末涂层防护性能的影响I:界面结合性能分析
Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel I: Analysis of Interface Bonding
查看参考文献20篇
文摘
|
通过拉伸实验和湿附着力评级实验,研究了210 ℃下基体的预热时间对熔结环氧粉末涂层/Q345钢界面结合性能的影响.结果表明,预热时间对涂层体系结合性能影响显著,Q345基体在210 ℃下预热6 h其结合性能达到最佳.采用CLSM、AFM和XPS等表面测试技术分别对基体表面形貌、粗糙度和化学成分进行表征,并探讨基体表面状态与涂层体系结合性能的相关性.结果表明,预热处理使得Q345基体表面生成致密氧化膜,氧化膜成分由外到内依次为Fe_2O_3层和Fe_3O_4层.随着预热时间延长,表层Fe_2O_3厚度基本不变,内层Fe_3O_4逐渐增厚,基体表面粗糙度改变;基体表面粗糙度的改变影响涂层体系结合性能. |
其他语种文摘
|
The effect of substrate preheating time on the interface bonding of fusion bonded epoxy powder coating/Q345 substrate was investigated by means of tensile test and wet adhesion test. Results showed that the preheating time presents significant effect on the interface bonding of coating/Q345 substrate, and among others, the best bonding performance could be acquired for the substrate being preheated for 6 h at 210 ℃. The surface morphology, roughness and chemical composition of the substrate were characterized by CLSM, AFM, XPS, and the correlation between the surface state of the substrate and the bonding performance of coating/substrate was inquired into. Results revealed that the preheating treatment resulted in the formation of a dense oxide scale on the surface of Q345 substrate, which composed of an outer layer Fe_2O_3 and an inner layer Fe_3O_4. With the prolonging preheating time, the thickness of Fe_2O_3 layer was almost the same and the inner layer Fe_3O_4 became thicker, whilst the surface roughness of the substrate changed gradually. The change of the surface roughness of the substrate affected the bonding performance of the coating/substrate system. |
来源
|
中国腐蚀与防护学报
,2018,38(2):124-132 【核心库】
|
DOI
|
10.11902/1005.4537.2017.046
|
关键词
|
熔结环氧粉末涂层
;
预热时间
;
结合性能
;
基体表面状态
|
地址
|
1.
中国科学院金属研究所, 沈阳, 110016
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-4537 |
学科
|
金属学与金属工艺 |
基金
|
中国科学院A类战略性先导科技专项
|
文献收藏号
|
CSCD:6251536
|
参考文献 共
20
共1页
|
1.
Kehr J A.
FBE, a foundation for pipeline corrosion coatings,2000
|
CSCD被引
1
次
|
|
|
|
2.
南仁植.
粉末涂料与涂装技术. (第3版),2014:441
|
CSCD被引
1
次
|
|
|
|
3.
Palimi M J. An evaluation of the anticorrosion properties of the spinel nanopigment-filled epoxy composite coatings applied on the steel surface.
Prog. Org. Coat,2015,80:164
|
CSCD被引
3
次
|
|
|
|
4.
刘丹. 环氧树脂防腐性能研究进展.
中国材料进展,2015,34:852
|
CSCD被引
16
次
|
|
|
|
5.
Elsner C I. Evaluation of the surface treatment effect on the anticorrosive performance of paint systems on steel.
Prog. Org. Coat,2003,48:50
|
CSCD被引
6
次
|
|
|
|
6.
王志鹏. 钢材表面处理工艺对环氧涂层附着力的影响.
全面腐蚀控制,2013,27(11):60
|
CSCD被引
4
次
|
|
|
|
7.
Jamali S S. Steel surface preparation prior to painting and its impact on protective performance of organic coating.
Prog. Org. Coat,2014,77:2091
|
CSCD被引
3
次
|
|
|
|
8.
Cho K. Effect of the microstructure of copper oxide on the adhesion behavior of epoxy/copper leadframe joints.
J. Adhes. Sci. Technol,2000,14:1333
|
CSCD被引
2
次
|
|
|
|
9.
李文超. 冷轧钢表面磷化膜和硅烷膜的制备与性能.
腐蚀与防护,2015,36:334
|
CSCD被引
2
次
|
|
|
|
10.
Vakili H. The corrosion performance and adhesion properties of the epoxy coating applied on the steel substrates treated by cerium-based conversion coatings.
Corros. Sci,2015,94:466
|
CSCD被引
13
次
|
|
|
|
11.
Liu B. Effect of cross linking degree and adhesion force on the anti-corrosion performance of epoxy coatings under simulated deep sea environment.
Prog. Org. Coat,2013,76:1814
|
CSCD被引
13
次
|
|
|
|
12.
Sorensen P A. Anticorrosive coatings: a review.
J. Coat. Technol. Res,2009,6:135
|
CSCD被引
38
次
|
|
|
|
13.
.
NIST XPS database
|
CSCD被引
3
次
|
|
|
|
14.
Mi W B. Fe~(3+)/Fe~(2+) ratio controlled magnetic and electrical transport properties of polycrystalline Fe_3(1-δ)O_4 films.
J. Phys.: Appl. Phys. D,2009,42:105007
|
CSCD被引
1
次
|
|
|
|
15.
Fujii T. In situ XPS analysis of various iron oxide films grown by NO_2~-assisted molecularbeam epitaxy.
Phys. Rev. B,1999,59:3195
|
CSCD被引
25
次
|
|
|
|
16.
Aronniemi M. Chemical state quantification of iron and chromium oxides using XPS: The effect of the background subtraction method.
Surf. Sci,2005,578:108
|
CSCD被引
7
次
|
|
|
|
17.
Wielant J. Electronic properties of thermally formed thin iron oxide films.
Electrochim. Acta,2007,52:7617
|
CSCD被引
4
次
|
|
|
|
18.
李美栓.
金属的高温腐蚀,2001:111
|
CSCD被引
2
次
|
|
|
|
19.
Bertrand N. Iron oxidation at low temperature (260~500℃) in air and the effect of water vapor.
Oxid. Met,2010,73(1/2):139
|
CSCD被引
8
次
|
|
|
|
20.
Bahlakeh G. A close-up of the effect of iron oxide type on the interfacial interaction between epoxy and carbon steel: Combined molecular dynamics simulations and quantum mechanics.
Phys. Chem. C,2016,120:11014
|
CSCD被引
1
次
|
|
|
|
|