上海洋山港环境空气IVOCs的浓度、组成和G20期间变化特征
Concentration, composition and variation of ambient IVOCs in Shanghai Port during the G20 summit
查看参考文献34篇
文摘
|
中等挥发性有机物(IVOCs)作为二次有机气溶胶的重要前体物倍受关注。柴油机(包括船舶)是重要的IVOCs排放源,但其排放特征和环境影响亟待研究。本文选择船舶活动密集的上海洋山港为研究区,采集夏季(2016年8月~9月)和冬季(2017年1月~2月)环境空气IVOCs样品,分析其浓度、组成和季节变化特征,探讨船舶排放对港口环境空气IVOCs的贡献,并评估杭州G20峰会期间船舶管控措施的实际效果。结果表明: (1)上海洋山港环境空气IVOCs平均浓度为(5.1±0.8) μg/m~3,其中,正构烷烃和多环芳烃分别占4.3%±0.8%和1.6%±0.5%,其余为不能单体识别的组分(UCM),包括支链烷烃(26.9%±3.9%)和剩余UCM(67.2%±4.4%); (2)时间上,洋山港IVOCs浓度夏季((5.7±0.3) μg/m~3)高于冬季((4.6±0.7) μg/m~3), “上午”(采样时段7:30~15:30)高于“下午”(15:30~23:20)和“夜晚”(23:30~7:20),显示船舶活动对港口环境空气的重要影响; (3)杭州G20会期(2016年9月4日~5日)相比于会前(8月22日~29日),洋山港IVOCs、OC、SO_2和NO_2浓度分别下降了8%、47%、31%和19%,表明船舶排放管控措施具有较显著的减排效果。 |
其他语种文摘
|
There are serious concerns about intermediate-volatility organic compounds (IVOCs), which are important precursors of secondary organic aerosols. Diesel engines, such as those on ships, are important sources of IVOCs, and the associated emission characteristics and impacts on ambient air need to be understood. In this study, atmospheric IVOC samples were collected at Yangshan Deep-Water Port in Shanghai during summer (late August to early September 2016, and during the G20 Summit in Hangzhou, China) and winter (January and February, 2017). Concentration levels, components, and seasonal variation characteristics of IVOCs were analyzed. The contribution of IVOCs from shipping emissions to ambient air in the harbor area was then discussed, and the actual effect of controlling measures on shipping emissions during G20 Summit session (September 4-5, 2016) was also evaluated. Results showed that: (1) The average concentration of atmospheric IVOCs in Yangshan Deep-Water Port was (5.1 ± 0.8) μg/m~3; 4.3% ± 0.8% of this amount was attributed to n-alkanes and 1.6% ± 0.5% to aromatic hydrocarbons, whereas the remaining amount was an Unresolved Complex Mixture (UCM). The UCM was comprised of two parts: an unspeciated b-alkanes accounting for 26.9% ± 3.9%; and residual UCM, which accounted for 67.2% ± 4.4%. (2) With respect to temporal characteristics, the average concentration of atmospheric IVOCs was higher in summer ((5.7 ± 0.3) μg/m~3) than winter ((4.6 ± 0.9) μg/m~3), and higher in “morning” (sampling time 07:30 - 15:30) than during “afternoon” (sampling time 15:30 - 23:30) and “night” (sampling time 23:30 - 7:20), which shows the strong influence of ship emissions on ambient air in the harbor. (3) Due to the controlling measures of ship emissions during Hangzhou G20 summit (September 4 - 5, 2016), there were evident declines in concentrations of IVOCs, OC, SO_2, and NO_2 by 8%, 47%, 31%, and 19%, respectively, which shows the significant emission reduction effect. |
来源
|
地球化学
,2018,47(3):313-321 【核心库】
|
DOI
|
10.19700/j.0379-1726.2018.03.008
|
关键词
|
中等挥发性有机物(IVOCs)
;
上海洋山港
;
船舶排放
;
浓度水平
;
化学组成
|
地址
|
1.
同济大学环境科学与工程学院, 中国气象局上海城市气候变化应对重点实验室, 上海, 200092
2.
上海市环境科学研究院大气环境研究所, 国家环境保护城市大气复合污染成因与防治重点实验室, 上海, 200233
3.
上海大学环境与化学工程学院,环境污染与健康研究所, 上海, 200444
4.
上海市气象局长三角环境气象预报预警中心, 上海市气象与健康重点实验室, 上海, 200030
5.
中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广东, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
地质学;环境质量评价与环境监测 |
基金
|
中央高校基本科研业务费专项资金
;
国家自然科学基金
;
国家科技支撑计划项目
;
广州市科学研究专项重点项目
|
文献收藏号
|
CSCD:6243622
|
参考文献 共
34
共2页
|
1.
Stocker T F. 2013: Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Comput Geom,2013,18(2):95-123
|
CSCD被引
1
次
|
|
|
|
2.
Huang R J. High secondary aerosol contribution to particulate pollution during haze events in China.
Nature,2014,514(7521):218-222
|
CSCD被引
546
次
|
|
|
|
3.
Wang G H. Persistent sulfate formation from London Fog to Chinese haze.
Proc Natl Acad Sci USA,2016,113(48):13630-13635
|
CSCD被引
94
次
|
|
|
|
4.
Hallquist M. The formation, properties and impact of secondary organic aerosol: Current and emerging issues.
Atmos Chem Phys,2009,9(14):5155-5236
|
CSCD被引
160
次
|
|
|
|
5.
Donahue N M. Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions.
Proc Natl Acad Sci USA,2012,109(34):13503-13508
|
CSCD被引
9
次
|
|
|
|
6.
Chacon-Madrid H J. Photo-oxi dation of pinonaldehyde at low NO_x: From chemistry to organic aerosol formation.
Atmos Chem Phys,2013,13(6):3227-3236
|
CSCD被引
2
次
|
|
|
|
7.
Zhao B. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China.
Sci Rep,2016,6:28815
|
CSCD被引
8
次
|
|
|
|
8.
Robinson A L. Rethinking organic qerosols: Semivolatile emissions and photochemical aging.
Science,2007,315(5816):1259-1262
|
CSCD被引
57
次
|
|
|
|
9.
Zhao Y L. Intermediate-volatility organic compounds: A large source of secondary organic aerosol.
Environ Sci Technol,2014,48(23):13743-13750
|
CSCD被引
13
次
|
|
|
|
10.
Tkacik D S. Secondary organic aerosol formation from intermediate-volatility organic compounds: Cyclic, linear, and branched alkanes.
Environ Sci Technol,2012,46(16):8773-8781
|
CSCD被引
16
次
|
|
|
|
11.
Presto A A. Intermediate-volatility organic compounds: A potential source of ambient oxidized organic aerosol.
Environ Sci Technol,2009,43(13):4744-4749
|
CSCD被引
5
次
|
|
|
|
12.
Donahue N M. Coupled partitioning, dilution, and chemical aging of semivolatile organics.
Environ Sci Technol,2006,40(8):2635-2643
|
CSCD被引
34
次
|
|
|
|
13.
Zhao Y L. Intermediate volatility organic compound emissions from on-road diesel vehicles: Chemical composition, emission factors, and estimated secondary organic aerosol production.
Environ Sci Technol,2015,49(19):11516-11526
|
CSCD被引
10
次
|
|
|
|
14.
Zhao Y L. Intermediate volatility organic compound emissions from on-road gasoline vehicles and small off-road gasoline engines.
Environ Sci Technol,2016,50(8):4554-4563
|
CSCD被引
8
次
|
|
|
|
15.
Chan A W H. Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: Implications for oxidation of intermediate volatility organic compounds (IVOCs).
Atmos Chem Phys,2009,9(9):3049-3060
|
CSCD被引
12
次
|
|
|
|
16.
Lim Y B. Effects of molecular structure on aerosol yields from oh radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of nox.
Environ Sci Technol,2009,43(7):2328-2334
|
CSCD被引
8
次
|
|
|
|
17.
Presto A A. Secondary organic aerosol formation from high-nox photooxidation of low volatility precursors: N-alkanes.
Environ Sci Technol,2010,44(6):2029-2034
|
CSCD被引
12
次
|
|
|
|
18.
Weitkamp E A. Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber.
Environ Sci Technol,2007,41(20):6969-6975
|
CSCD被引
9
次
|
|
|
|
19.
Gordon T D. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles.
Atmos Chem Phys,2014,14(9):4661-4678
|
CSCD被引
14
次
|
|
|
|
20.
Gordon T D. Secondary organic aerosol production from diesel vehicle exhaust: Impact of aftertreatment, fuel chemistry and driving cycle.
Atmos Chem Phys,2014,14(9):4643-4659
|
CSCD被引
8
次
|
|
|
|
|