含水合物黏土的力学性质试验研究
Experimental study of mechanical properties of hydrate clay
查看参考文献22篇
文摘
|
基于含四氢呋喃水合物黏土样品在不同水合物饱和度、围压及水合物分解前后的高压三轴剪切试验和超声波测量数据,分析了含水合物黏土的应力-应变关系和强度特性.试验结果表明:(1)含水合物黏土的应力-应变曲线展现出弹性、塑性变形以及应变硬化三个阶段(在应变低于1.5%时近似为弹性,在应变2%~6%范围内表现为塑性,在大于6%后呈现明显的应变硬化特性),与不含水合物黏土的应力-应变关系有明显不同;(2)含水合物黏土在水合物分解前后的应力-应变关系存在明显的不同,水合物分解后比水合物分解前的不排水强度值降低程度最大为50%;(3)含水合物黏土的不排水抗剪强度随水合物饱和度和围压的增加而增大,并比不含水合物黏土的强度提高1~6倍.上述结果表明水合物的存在增强了黏土颗粒之间的连结或胶结作用. |
其他语种文摘
|
Based on a series of high compression static tri-axial shear experiment and ultrasonic wave measurement data of tetrahydrofuran hydrate clay samples under the condition of different hydrate saturation, confining pressure and before and after hydrate decomposition, the stress-strain relation and strength characteristics of hydrate clay were analyzed. Experimental results show that (1) the stress-strain curve of hydrate clay presents three stages, i.e. approximately elastic stage (when strain is less than 1.5%), plastic deformation stage (when strain is in a range of 2% and 6%) and obvious strain hardening stage (when strain is greater than 6%), which indicate obvious difference of stress-strain relation compared with that of clay without hydrate; (2)there is a distinct difference in stress strain relationship of hydrate clay before and after hydrate decomposition, compared with the clay before hydrate decomposition, the maximum reduction of undrained strength of hydrate clay after hydrate decomposition is 50%; (3)the undrained shear strength of hydrate clay increases with the increase of hydrate saturation and confining pressure, and the strength of hydrate clay is 1~6 times higher than that of clay without hydrate. Above results demonstrate that the presence of hydrate enhances the bonding or cementation among clay particles. |
来源
|
实验力学
,2018,33(2):245-252 【核心库】
|
DOI
|
10.7520/1001-4888-16-220
|
关键词
|
四氢呋喃水合物
;
黏土
;
含水合物黏土
;
应力-应变
;
强度
|
地址
|
1.
中国科学院力学研究所, 中国科学院流固耦合系统力学重点实验室, 北京, 100190
2.
广州海洋地质调查局, 广州, 510075
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4888 |
学科
|
建筑科学 |
基金
|
国家自然科学基金
;
国土资源部中国地质调查局项目
;
中石油-中科院高端战略联盟计划
|
文献收藏号
|
CSCD:6229728
|
参考文献 共
22
共2页
|
1.
Winters W J. Relation between gas hydrate and physical properties at the Mallik 2L-38 research well in the Mackenzie Delta.
Annals New York Academy of Sciences,2000,912:94-100
|
CSCD被引
5
次
|
|
|
|
2.
Winters W J. Physical properties and rock physica models of sediment containing natural and laboratory-formed methane gas hydrate.
American Mineralogist,2004,89:1221-1227
|
CSCD被引
49
次
|
|
|
|
3.
Winters W J. Methane gas hydrate effect on sediment acoustic and strength properties.
Journal of Petroleum Science and Engineering,2007,56:127-135
|
CSCD被引
70
次
|
|
|
|
4.
Waite W F. Methane hydrate formation in partially water-saturated Ottawa sand.
American Mineralogist,2004,89(8):1202-1207
|
CSCD被引
21
次
|
|
|
|
5.
Hyodo M. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed.
Soils and Foundations,2013,53(2):299-314
|
CSCD被引
61
次
|
|
|
|
6.
Hyodo M. Mechanical properties of sandy sediment containing methane hydrate.
Journal of Geophysical Research: Solid Earth,2013,118(10):5185-5194
|
CSCD被引
23
次
|
|
|
|
7.
Clayton C R I. The effects of disseminated methane hydrate on the dynamic stiffness and damping of a sand.
Geotechnique,2005,55(6):423-434
|
CSCD被引
20
次
|
|
|
|
8.
Masui A. Mechanical properties of sandy sediment containing marine gas hydrates in deep sea offshore Japan.
Proceedings of 17th International Offshore and Polar Engineering Conference, Ocean Mining Symposium,2007:53-56
|
CSCD被引
2
次
|
|
|
|
9.
Masui A. Effect of methane hydrate formation on shear strength of synthetic methane hydrate sediment.
Proceedings of 15th International Offshore and Polar Engineering Conference,2005:364-369
|
CSCD被引
2
次
|
|
|
|
10.
Miyazaki K. Strain-rate dependency of peak and residual strength of sediment containing synthetic methane hydrate in triaxial compression test.
Proceedings of 19th International Offshore and Polar Engineering Conference,2009:364-369
|
CSCD被引
1
次
|
|
|
|
11.
Miyazaki K. Effect of confining pressure on triaxial compressive properties of artificial methane hydrate bearing sediments.
Offshore Technology Conference,2010:1823-1831
|
CSCD被引
1
次
|
|
|
|
12.
Priest J A. Influence of gas hydrate morphology on the seismic velocities of sands.
Journal of Geophysical Research,2009,114(B11):B11205
|
CSCD被引
23
次
|
|
|
|
13.
Kneafsey T J. X-Ray computed tomography examination and comparison of gas hydrate dissociation in NGHP-01 expedition (India) and Mount Elbert (Alaska) sediment cores: Experimental observations and numerical modeling.
Marine and Petroleum Geology,2014,58(A):526-536
|
CSCD被引
3
次
|
|
|
|
14.
张旭辉. 天然气水合物沉积物力学性质的试验研究.
岩土力学,2010,31(10):3069-3074
|
CSCD被引
62
次
|
|
|
|
15.
颜荣涛. 水合物形成对含水合物砂土强度影响.
岩土工程学报,2012,34(7):1234-1240
|
CSCD被引
33
次
|
|
|
|
16.
Li Y H. Analysis of mechanical properties and strength criteria of methane hydrate-bearing sediments.
International Journal of Offshore Polar Engineering,2012,22:290-296
|
CSCD被引
4
次
|
|
|
|
17.
李实. 含水合物沉积物力学性质: 方法、特性与定量关系.
地质科技情报,2014,33(1):9-18
|
CSCD被引
2
次
|
|
|
|
18.
孙中明. 沉积物中甲烷水合物饱和度测定及其力学特性研究.
实验力学,2013,28(6):747-754
|
CSCD被引
13
次
|
|
|
|
19.
张磊. 含水合物沉积物力学性质及影响因素.
海洋地质前沿,2011,6:24-28
|
CSCD被引
1
次
|
|
|
|
20.
Yun T S. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate.
Journal of Geophysical Research,2007,112:B04106
|
CSCD被引
44
次
|
|
|
|
|