2000-2016年青海湖湖冰物候特征变化
Spatial-temporal characteristics of ice phenology of Qinghai Lake from 2000 to 2016
查看参考文献41篇
文摘
|
湖冰物候特征是气候变化的灵敏指示器。基于2000-2016年青海湖边界矢量数据,结合 Terra MODIS和Landsat TM/ETM+遥感影像及气象数据,利用RS和GIS技术综合分析青海湖湖冰物候特征变化及其对气候变化的响应。结果表明:①青海湖开始冻结、完全冻结、开始消融和完全消融的时间分别为12月中旬、1月上旬、3月中下旬和3月下旬至4月上旬,平均封冻期和平均完全封冻期为88 d和77 d,平均湖冰存在期和平均消融期为108 d和10 d。②近16年间青海湖湖冰物候特征各时间节点变化呈现较大的差异性。湖泊开始冻结日期相对变化较小,完全冻结日期呈先提前后推迟的波动趋势,开始消融日期呈先推迟后提前的波动趋势,完全消融日期在2012-2016年呈明显提前趋势。青海湖封冻期在2000-2005年和2010-2016年呈缩短趋势,但减少速率慢于青藏高原腹地的湖泊。③青海湖冻结和消融的空间模式相同,即湖冰形成较早的区域则消融较早,且前者持续时间(18~31 d)整体上大于后者(7~20 d),二者相差约10 d。④冬半年负积温大小是影响青海湖封冻期的关键要素,但风速和降水对青海湖湖冰的形成和消融亦发挥着重要作用。 |
其他语种文摘
|
Lake ice phenology is considered a sensitive indicator of regional climate change. We utilized time series information of this kind extracted from a series of multi-source remote sensing (RS) datasets including the MOD09GQ surface reflectance product, Landsat TM/ ETM + images, and meteorological records to analyze spatiotemporal variations of ice phenology of Qinghai Lake between 2000 and 2016 by applying both RS and GIS technology. We also identified the climatic factors that have influenced lake ice phenology over time and draw some conclusions. First, data show that freeze-up start (FUS), freeze-up end (FUE), breakup start (BUS), and break-up end (BUE) on Qinghai Lake usually occurred in mid-December, early January, mid-to-late March, and early April, respectively. The average freezing duration (FD, between FUE and BUE), complete freezing duration (CFD, between FUE and BUS), ice coverage duration (ICD, between FUS and BUE), and ablation duration (AD, between BUS and BUE) were 88 days, 77 days, 108 days and 10 days, respectively. Second, while the results of this analysis reveal considerable differences in ice phenology on Qinghai Lake between 2000 and 2016, there has been relatively little variation in FUS times. Data show that FUE dates had also tended to fluctuate over time, initially advancing and then being delayed, while the opposite was the case for BUS dates as these advanced between 2012 and 2016. Overall, there was a shortening trend of Qinghai Lake's FD in two periods, 2000-2005 and 2010-2016, which was shorter than those seen on other lakes within the hinterland of the Tibetan Plateau. Third, Qinghai Lake can be characterized by similar spatial patterns in both freeze-up (FU) and break-up (BU) processes, as parts of the surface which freeze earlier also start to melt first, distinctly different from some other lakes on the Tibetan Plateau. A further feature of Qinghai Lake ice phenology is that FU duration (between 18 days and 31 days) is about 10 days longer than BU duration (between 7 days and 20 days). Fourth, data show that negative temperature accumulated during the winter half year (between October and the following April) also plays a dominant role in ice phenology variations of Qinghai Lake. Precipitation and wind speed both also exert direct influences on the formation and melting of lake ice cover and also cannot be neglected. |
来源
|
地理学报
,2018,73(5):932-944 【核心库】
|
DOI
|
10.11821/dlxb201805012
|
关键词
|
湖冰
;
物候特征
;
冻结—消融过程
;
MODIS
;
青海湖
|
地址
|
西北师范大学地理与环境科学学院, 兰州, 730070
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
地球物理学 |
基金
|
中国科学院寒区旱区环境与工程研究所冰冻圈科学国家重点实验室基金
;
国家自然科学基金项目
;
西北师范大学青年教师科研能力提升计划项目
|
文献收藏号
|
CSCD:6229015
|
参考文献 共
41
共3页
|
1.
Vaughan D G.
Observations: Cryosphere. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2013
|
CSCD被引
5
次
|
|
|
|
2.
Weber H. Lake ice phenology from AVHRR data for European lakes: An automated two-step extraction method.
Remote Sensing of Environment,2016,174:329-340
|
CSCD被引
11
次
|
|
|
|
3.
Johnson S L. Indicators of climate warming in Minnesota: Lake ice covers and snowmelt runoff.
Climate Change,2006,75(4):421-453
|
CSCD被引
12
次
|
|
|
|
4.
Marszelewski W. Ice cover as an indicator of winter air temperature changes: Case study of the Polish Lowland lakes.
Hydrological Sciences Journal,2006,51(2):336-349
|
CSCD被引
15
次
|
|
|
|
5.
秦大河.
中国气候与环境演变: 2012综合卷,2012
|
CSCD被引
4
次
|
|
|
|
6.
Benson B J. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855-2005).
Climatic Change,2012,112(2):299-323
|
CSCD被引
16
次
|
|
|
|
7.
Duguay C R. Recent trends in Canadian lake ice cover.
Hydrological Processes,2006,20(4):781-801
|
CSCD被引
17
次
|
|
|
|
8.
Weyhenmeyer G A. Nonlinear temperature response of lake ice breakup.
Geophysical Research Letters,2004,31(31):157-175
|
CSCD被引
7
次
|
|
|
|
9.
辛羽飞. 全球冰冻圈变化预测研究现状.
极地研究,2008,20(3):671-682
|
CSCD被引
3
次
|
|
|
|
10.
潘保田. 青藏高原:全球气候变化的驱动机与放大器.III.青藏高原降起对气候变化的影响.
兰州大学学报(自然科学版),1996,32(1):108-115
|
CSCD被引
168
次
|
|
|
|
11.
Ma R. China's lakes at present: Number, area and spatial distribution.
Science China Earth Sciences,2011,54(2):283-289
|
CSCD被引
17
次
|
|
|
|
12.
Kropacek J. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data.
The Cryosphere,2013,7(1):287-301
|
CSCD被引
33
次
|
|
|
|
13.
魏秋方. 湖冰遥感监测方法综述.
地理科学进展,2010,29(7):803-810
|
CSCD被引
24
次
|
|
|
|
14.
Lenormand F. Development of a historical ice database for the study of climate change in Canada.
Hydrological Processes,2002,16(18):3707-3722
|
CSCD被引
6
次
|
|
|
|
15.
Hall D K. MODIS snow-cover products.
Remote Sensing of Environment,2002,83(1):181-194
|
CSCD被引
138
次
|
|
|
|
16.
Latifovic R. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record.
Remote Sensing of Environment,2007,106(4):492-507
|
CSCD被引
28
次
|
|
|
|
17.
Magnuson J J. Historical trends in lake and river ice cover in the Northern Hemisphere.
Nature,2000,289(5485):1743-1746
|
CSCD被引
38
次
|
|
|
|
18.
Wang J. Temporal and spatial variability of Great Lakes ice cover, 1973-2010.
Journal of Climate,2012,25(4):1318-1329
|
CSCD被引
5
次
|
|
|
|
19.
Wang J. Development of the great lakes ice-circulation model (GLIM): Application to Lake Erie in 2003-2004.
Journal of Great Lakes Research,2010,36(3):425-436
|
CSCD被引
3
次
|
|
|
|
20.
Dibike Y. Simulation of North American lake-ice cover characteristics under contemporary and future climate conditions.
International Journal of Climatology,2012,32(5):695-709
|
CSCD被引
8
次
|
|
|
|
|