热处理温度对Cr-Ni-Mo-V钢组织和力学性能的影响
Effect of heat treatment temperature on microstructure and mechanical properties of Cr-Ni-Mo-V steel
查看参考文献21篇
文摘
|
利用OM、SEM和TEM等研究了热处理温度(正火温度、淬火温度和回火温度)对Cr-Ni-Mo-V钢微观组织和力学性能的影响。结果表明:在840 ~ 920 ℃的正火温度和淬火温度范围内,合金钢的原奥晶粒尺寸变化不大(8 ~ 17 μm),对最终回火态合金钢的力学性能影响较小。随着回火温度(460 ~ 660 ℃)的升高,基体α-Fe的板条宽度从460 ℃的50 nm逐渐增加到610 ℃的500 nm,直至660 ℃板条特征不明显;与此同时,基体α-Fe逐渐分解析出较粗大(500 ~ 1000 nm)的条状碳化物,使得Cr-Ni-Mo-V钢的强度逐渐降低,而在510 ~ 560 ℃析出了细小弥散的针状碳化物(50 ~ 500 nm)和球状碳化物(<50 nm),引起了二次硬化,使得合金钢的强度反而略有增加。此外,合金钢的伸长率逐渐升高,-50 ℃冲击吸收能量从560 ℃开始明显提高。采用840 ~ 920 ℃正火+840 ~ 920 ℃淬火+510 ~ 610 ℃回火处理工艺可使Cr-Ni-Mo-V钢获得较好的综合力学性能。 |
其他语种文摘
|
Effect of heat treatment temperatures (normalizing temperature,quenching temperature and tempering temperature) on the microstructure and mechanical properties of a Cr-Ni-Mo-V steel was investigated by means of OM,SEM and TEM. The results show that the prior austenite grain size of the tested steel changes little (8-17 μm) when the normalizing and quenching temperatures are in the range of 840-920 ℃,which has little effect on the mechanical properties of the final tempered steel. When the tempering temperature increases in the range of 460-660 ℃,the lath width of α-Fe increases from 50 nm at 460 ℃ to 500 nm at 610 ℃,and the laths become obscure at 660 ℃. Meanwhile,the matrix α-Fe decomposes gradually and precipitates out relatively bulky strip-like carbides,which makes the strength of Cr- Ni-Mo-V steel to reduce gradually. When tempered in the range of 510-560 ℃,however,the strength of the steel increases slightly due to secondary hardening caused by precipitation of fine dispersive acicular carbides (50-500 nm) and spherical carbides (< 50 nm). In addition,the elongation increases,and the impact absorbed energy at -50 ℃ improves obviously since 560 ℃. Therefore,the tested Cr-Ni- Mo-V steel can obtain preferred comprehensive mechanical properties by adopting a heat treatment process of 840-920 ℃ normalizing+840- 920 ℃ quenching+510-610 ℃ tempering. |
来源
|
金属热处理
,2018,43(3):177-184 【核心库】
|
DOI
|
10.13251/j.issn.0254-6051.2018.03.037
|
关键词
|
Cr-Ni-Mo-V钢
;
热处理温度
;
原奥氏体晶粒尺寸
;
碳化物
;
力学性能
|
地址
|
1.
中国科学院金属研究所, 中国科学院核用材料与安全评价重点实验室, 辽宁, 沈阳, 110016
2.
中国科学技术大学材料科学与工程学院, 辽宁, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-6051 |
学科
|
金属学与金属工艺 |
基金
|
国家重点研发计划
|
文献收藏号
|
CSCD:6220252
|
参考文献 共
21
共2页
|
1.
张中武. 高强度低合金钢(HSLA)的研究进展.
中国材料进展,2016,35(2):141-151
|
CSCD被引
14
次
|
|
|
|
2.
Galibois A. Control of grain size and substructure in plain carbon and high strength low alloy (HSLA) steels-the problem and the prospect.
Metallurgical Transactions A,1979,10(8):985-995
|
CSCD被引
3
次
|
|
|
|
3.
Van Bohemen S M C. Martensite formation in partially and fully austenitic plain carbon steels.
Metallurgical and Materials Transactions A,2009,40(5):1059-1068
|
CSCD被引
6
次
|
|
|
|
4.
徐祖耀. 用于超高强度钢的淬火-碳分配-回火(沉淀) (Q-P-T)工艺.
热处理,2008,23(2):1-5
|
CSCD被引
28
次
|
|
|
|
5.
Caballero F G. Very strong bainite.
Current Opinion in Solid State and Materials Science,2004,8(3/4):251-257
|
CSCD被引
84
次
|
|
|
|
6.
温涛. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响.
金属学报,2014,50(4):447-453
|
CSCD被引
28
次
|
|
|
|
7.
王文杰. 高性能先进舰船用合金材料的应用现状及展望.
材料导报,2013,27(7):98-105
|
CSCD被引
16
次
|
|
|
|
8.
Lee K H. Cleavage fracture toughness of tempered martensitic Ni-Cr-Mo low alloy steel with different martensite fraction.
Materials Science and Engineering A,2012,534(534):75-82
|
CSCD被引
4
次
|
|
|
|
9.
温涛.
气瓶用高强高韧Fe-Cr-Ni-Mo系合金钢的研究,2014
|
CSCD被引
4
次
|
|
|
|
10.
戴起勋.
金属材料学. (2版),2012
|
CSCD被引
2
次
|
|
|
|
11.
党淑娥. 30Cr2Ni4MoV钢铸态加热过程中奥氏体晶粒的长大行为.
材料研究学报,2014,28(9):675-681
|
CSCD被引
7
次
|
|
|
|
12.
Speich G R. Tempering of steel.
Metallurgical and Materials Transactions B,1972,3(5):1043-1054
|
CSCD被引
31
次
|
|
|
|
13.
Pigrova G D. Carbide diagrams and precipitation of alloying elements during aging of low-alloy steels.
Metallurgical and Materials Transactions A,1996,27(2):498-502
|
CSCD被引
2
次
|
|
|
|
14.
Janovec J. Influence of tempering temperature on stability of carbide phases in 2.6Cr-0.7Mo-0.3V steel with various carbon content.
Metallurgical and Materials Transactions A,1994,25(2):267-275
|
CSCD被引
8
次
|
|
|
|
15.
Mulholland M D. Nanoscale Co-precipitation and mechanical properties of a high-strength low-carbon steel.
Acta Materialia,2011,59(5):1881-1897
|
CSCD被引
28
次
|
|
|
|
16.
孙树文. 低合金Cr-Mo-V钢中VC沉淀相的精细结构.
金属学报,2000,36(10):1009-1014
|
CSCD被引
9
次
|
|
|
|
17.
刘庆冬. 回火马氏体中合金碳化物的3D原子探针表征Ⅱ.长大.
金属学报,2009(11):1288-1296
|
CSCD被引
18
次
|
|
|
|
18.
刘庆冬. 回火马氏体中合金碳化物的3D原子探针表征Ⅲ.粗化.
金属学报,2009,45(11):1297-1302
|
CSCD被引
13
次
|
|
|
|
19.
孙树文. 正火12Cr1MoV钢回火脆化的冷速敏感性.
钢铁,1998,33(8):38-41
|
CSCD被引
3
次
|
|
|
|
20.
Li S. Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C-1.1Si-1.7Mn steel.
Journal of Alloys and Compounds,2016,675:104-115
|
CSCD被引
15
次
|
|
|
|
|