帮助 关于我们

返回检索结果

高超声速激波湍流边界层干扰直接数值模拟研究
DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS

查看参考文献30篇

童福林 1   李欣 2,3   于长平 2   李新亮 2,3  
文摘 高超声速激波与湍流边界层干扰会导致飞行器表面出现局部热流峰值,严重影响飞行器气动性能和飞行安全.针对高马赫数激波干扰问题,以往数值研究多采用雷诺平均方法,而在直接数值模拟方面的相关工作较为少见.开展高超声速激波与湍流边界层干扰的直接数值模拟研究,有助于进一步提升对其复杂流动机理认识和理解,同时也将为现有湍流模型和亚格子应力模型的改进提供理论依据.采用直接数值模拟方法对来流马赫数6.0,34 ◦压缩拐角内激波与湍流边界层的干扰问题进行了研究.基于雷诺应力各向异性张量,分析了高超声速湍流边界层在压缩拐角内的演化特性.通过对湍动能输运方程的逐项分析,系统地研究了可压缩效应对湍动能及其输运的影响机制.采用动态模态分解方法,探讨了干扰流场的非定常运动历程.研究结果表明,随着湍流边界层往下游发展,近壁湍流的雷诺应力状态由两组元轴对称状态逐渐演化为两组元状态,外层区域则由轴对称膨胀趋近于各向同性.干扰流场内存在强内在压缩性效应(声效应),其对湍动能输运的影响主要体现在压力--膨胀项,而对膨胀--耗散项影响较小.高超声速下压缩拐角内的非定常运动仍存在以分离泡膨胀/收缩为特征的低频振荡特性,其物理机制与分离泡剪切层密切相关.
其他语种文摘 The peak of local thermal load might be severe due to the interactions of hypersonic shock wave and turbulent boundary layer. It has significant effect on the aerodynamic performance and flight safety of vehicle. Most previous studies on the interaction in hypersonic condition were based on the Reynolds-averaged methods, the corresponding direct numerical simulation is relatively scarce. The direct numerical analysis of hypersonic shock wave and turbulent boundary layer interaction are helpful to the understanding of the relevant mechanisms and the improvement of existing turbulent modes and sub-grid stress models. Numerical analysis of hypersonic shock wave and turbulent boundary layer interactions in a 34 ◦ compression ramp are carried out by means of direct numerical simulation for a free-stream Mach number M∞ = 6.0. Based on the Reynolds stress anisotropy tensor, the evolution of turbulent boundary layer along the compression ramp is analyzed. The compressibility effects on turbulent kinetic energy and its transport mechanism are studied through item by item analysis of transport equation. Using dynamic mode decomposition method, the characteristic of unsteadiness in the interaction region is investigated. It is found that along the flow developing downstream, the turbulent state in the near wall region is gradually turned into two-component turbulence from two-component axisymmetric state. The turbulence in outer region approaches the isotropic state from axisymmetric expansion. The results exhibit that there exist significant compressibility effects in the interaction region. The pressure-dilation correlation in turbulent kinetic energy budgets is enhanced significantly. However, it has little effect on the dilatational dissipation. The low-frequency oscillation in hypersonic compression ramp is characterized by the breathing motion of separation bubble. According to the spatial structure of low frequency dynamic modes, the unsteadiness is strongly associated with the separated shear layer.
来源 力学学报 ,2018,50(2):197-208 【核心库】
DOI 10.6052/0459-1879-17-239
关键词 高超声速 ; 激波湍流边界层干扰 ; 直接数值模拟 ; 湍动能 ; 低频振荡
地址

1. 中国空气动力研究与发展中心计算空气动力研究所, 四川, 绵阳, 621000  

2. 中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190  

3. 中国科学院大学工程科学学院, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 0459-1879
学科 数学;航空
基金 国家自然科学基金 ;  国家重点研发计划
文献收藏号 CSCD:6214644

参考文献 共 30 共2页

1.  Dolling D S. Fifty years of shock-wave/boundary-layer interaction research: What next?. AIAA Journal,2001,39(8):1517-1530 CSCD被引 69    
2.  Gaitonde D V. Progress in shock wave/boundary layer interactions. Progress in Aerospace Sciences,2015,72:80-99 CSCD被引 53    
3.  Edwards J R. Numerical simulations of shock/boundary layer interactions using time dependent modeling techniques: A survey of recent results. Progress in Aerospace Sciences,2008,44:447-465 CSCD被引 7    
4.  Knight D D. Assessment of CFD capability for prediction of hypersonic shock interactions. Progress in Aerospace Sciences,2012,48:8-26 CSCD被引 14    
5.  Dolling D S. High-speed turbulent separated flows: Consistency of mathematical models and flow physics. AIAA Journal,1998,36(5):725-735 CSCD被引 1    
6.  Pirozzoli S. Numerical methods for high-speed flows. Annual Reviews of Fluid Mechanics,2011,43:163-194 CSCD被引 20    
7.  李新亮. 8阶群速度控制格式及其应用. 力学学报,2004,36(1):79-83 CSCD被引 6    
8.  Loginov M S. Large-eddy simulation of shock wave turbulent boundary layer interaction. Journal of Fluid Mechanics,2006,565:135-169 CSCD被引 20    
9.  Adams N A. Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Reθ = 1 685. Journal of Fluid Mechanics,2000,420:47-83 CSCD被引 15    
10.  Pirozzoli S. Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at M = 2.25. Physics of Fluids,2006,18:065113 CSCD被引 33    
11.  Wu M. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA Journal,2007,45(4):879-889 CSCD被引 39    
12.  Wu M. Analysis of shock motion in shock wave and turbulent boundary layer interaction using direct numerical simulation data. Journal of Fluid Mechanics,2008,594:71-83 CSCD被引 19    
13.  Priebe S. Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. Journal of Fluid Mechanics,2012,699:1-49 CSCD被引 25    
14.  Helm C. Characterization of the shear layer in a Mach 3 shock/turbulent boundary layer interaction. AIAA paper. 2014-0941,2014 CSCD被引 1    
15.  Li X L. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp. Science China: Physics, Mechanics & Astronomy,2010,53(9):1651-1658 CSCD被引 21    
16.  Fang J. Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner. Physics of Fluids,2015,27:125104 CSCD被引 12    
17.  傅德薰. 可压缩湍流直接数值模拟,2010 CSCD被引 27    
18.  童福林. 激波与转捩边界层干扰非定常特性数值分析. 力学学报,2017,49(1):93-104 CSCD被引 17    
19.  李新亮. 基于直接数值模拟的可压缩湍流模型评估和改进. 力学学报,2012,44(2):222-229 CSCD被引 6    
20.  Pirozzoli S. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Physics of Fluids,2004,16:530-545 CSCD被引 51    
引证文献 13

1 洪正 各向同性湍流通过正激波的演化特征研究 力学学报,2018,50(6):1356-1367
CSCD被引 5

2 李益文 进气道等离子体/磁流体流动控制研究进展 力学学报,2019,51(2):311-321
CSCD被引 5

显示所有13篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号