斑岩型铜(±金-钼)矿床岩浆氧化硫与成矿还原硫转换机制及找矿意义
Mechanisms for transform of sulfate in porphyry high oxidized magmas to ore-forming sulfur of porphyry Cu( ± Au-Mo) deposits and their application
查看参考文献48篇
文摘
|
斑岩型铜(±金一钼)矿床和高氧化岩浆具紧密成因联系,我国及世界主要斑岩铜钼金矿床岩浆期多发育磁铁矿一赤铁矿组合,个别矿床见岩浆期石膏.这表明斑岩铜(±金一钼)矿床成矿岩浆$\log f\left( {{{\rm{O}}_2}} \right) > \Delta {\rm{FQM + 2}}$,岩浆中的硫主要为氧化硫,斑岩型矿床的硫主要为还原硫.斑岩矿床在岩浆演化晚期及钾化阶段多发育磁铁矿,而岩浆一成矿系统中亚铁$\left( {{\rm{F}}{{\rm{e}}^{2 + }}} \right)$和氧化硫反应,可被氧化成为$\left( {{\rm{F}}{{\rm{e}}^{3 + }}} \right)$,形成磁铁矿,氧化硫被还原.因此提出斑岩矿床成矿早期磁铁矿化,使氧化硫被还原形成还原硫,为斑岩矿床硫化物沉淀析出提供充足还原硫,在斑岩矿床形成过程中起着关键作用.据成矿岩体多发育磁铁矿,提出斑岩型矿床找矿中应注意高磁化率中酸性岩带;斑岩矿床主要成矿多发育于黄铁绢英岩化阶段,而在弱酸性环境下的黄铁绢英岩化过程中,磁铁矿会被黄铁矿交代,磁铁矿减少,矿化较强处磁化率会降低.因此,高磁化率带岩体中低磁化率区或高低磁化率变化频繁地段应为寻找富矿的重点地段. |
其他语种文摘
|
It is well known that porphyry ${\rm{Cu}}\left( {{\rm{ \pm Au - Mo}}} \right)$ deposits are genetically associated with high oxidized magmas. Magnetite-hematite assemblages have been found in the Yulong in the eastern Tibet, Xiongcun, Duobuza porphyry Cu-Au ( Mo) deposits in the southern and the northern Gangdese, respectively, the Dexing porphyry Cu-Au-Mo deposit in Jiangxi and the Luoboling porphyry Cu-Mo deposit in Fujian province; magma anhydrite is found in the Yulong porphyry Cu-Au-Mo deposit and reported in many porphyry deposits all over the world. These features suggest that the magmas of porphyry ${\rm{Cu}}\left( {{\rm{ \pm Au - Mo}}} \right)$ deposits are characterized by high oxidized with $\log f\left( {{{\rm{O}}_2}} \right) > \Delta {\rm{FQM + 2}}$ and sulfate dominant. Porphyry ${\rm{Cu}}\left( {{\rm{ \pm Au - Mo}}} \right)$ deposits are characterized by sulfide association,suggesting that the reduced sulfur is dominant during main stage of porphyry mineralization. How is the magmatic sulfate reduced to the ore sulfide during the porphyry ore forming processes? Magnetite alteration is well developed in the silicon-potassium alteration stage of porphyry deposits. Based on that the reaction of ferrous with sulfate could result in the formation of magnetite and reduced sulfur,it is proposed that the early stage magnetite alteration in the porphyry ore forming systems which result in the transform of sulfate to reduced sulfur, play a key role in the formation of porphyry ${\rm{Cu}}\left( {{\rm{ \pm Au - Mo}}} \right)$ deposits. Based on our result it is suggested that felsic igneous belt with high magnetic susceptibility should be the ore prospecting target area of porphyry ${\rm{Cu}}\left( {{\rm{ \pm Au - Mo}}} \right)$ deposits. Due to magnetite could be replaced by pyrite during sericite-pyrite alteration stage in weak acidic condition and the porphyry ore rich bodies are often located in the overlap zone of potassic-sillicon and sericite-pyrite alteration, the ore rich domains should be characterized by low magnetic susceptibility. It is therefore,that the domain with low magnetic susceptibility in the zone with high magnetic susceptibility should be the key target for high grade porphyry ore exploration. |
来源
|
南京大学学报. 自然科学版
,2018,54(2):236-244 【核心库】
|
DOI
|
10.13232/j.cnki.jnju.2018.02.002
|
关键词
|
斑岩型铜矿床
;
成矿岩体
;
磁铁矿化
;
高氧化岩浆
|
地址
|
1.
中国科学院广州地球化学研究所, 广州, 510640
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0469-5097 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
科技部国家重点研究计划
|
文献收藏号
|
CSCD:6209863
|
参考文献 共
48
共3页
|
1.
侯增谦. 大陆碰撞成矿论.
地质学报,2010,84(1):30-58
|
CSCD被引
109
次
|
|
|
|
2.
侯增谦. 青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.
矿床地质,2006,25(4):337-358
|
CSCD被引
254
次
|
|
|
|
3.
Richards J P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere.
Geology,2009,37(3):247-250
|
CSCD被引
168
次
|
|
|
|
4.
John D A.
Porphyry copper deposit model. Scientific Investigations Report. U. S. Department of the Interior U. S. Geological Survey,2010 -5070-B
|
CSCD被引
1
次
|
|
|
|
5.
Seedorff E. Henderson porphyry molybdenum system, Colorado: II. Decoupling of introduction and deposition of metals during geochemical evolution of hydrothermal fluids.
Economic Geology,2004,99(1):39-72
|
CSCD被引
27
次
|
|
|
|
6.
Silitoe R H. Porphyry Copper Systems.
Economic Geology,2010,105(1):3-41
|
CSCD被引
569
次
|
|
|
|
7.
Bowen R.
Copper: Its geology and economics,1977:1-150
|
CSCD被引
2
次
|
|
|
|
8.
Mitchell A H G. Metallogenic belts and angle of dip of Benioff zones.
Nature,1973,245(143):49-52
|
CSCD被引
29
次
|
|
|
|
9.
Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation.
Economic Geology,2003,98(8):1515-1533
|
CSCD被引
288
次
|
|
|
|
10.
Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits.
Economic Geology,1972,67(2):184-197
|
CSCD被引
165
次
|
|
|
|
11.
芮宗瑶.
中国斑岩铜(钼)矿床,1984:1-350
|
CSCD被引
156
次
|
|
|
|
12.
朱训.
德兴斑岩铜矿(钼)矿床,1983:1-336
|
CSCD被引
1
次
|
|
|
|
13.
陈衍景.
豫西金矿成矿规律,1992:1-234
|
CSCD被引
129
次
|
|
|
|
14.
Chen H Y. Geodynamic settings and tectonic model of skarn gold deposits in China: An overview.
Ore Geology Reviews,2007,31(1/4):139-169
|
CSCD被引
172
次
|
|
|
|
15.
Hou Z Q. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet.
Economic Geology,2003,98(1):125-145
|
CSCD被引
214
次
|
|
|
|
16.
Hou Z Q. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan orogeny.
Ore Geology Reviews,2009,36(1/3):25-51
|
CSCD被引
167
次
|
|
|
|
17.
姜耀辉. 陆-陆碰撞造山环境下含铜斑岩岩石成因--以藏东玉龙斑岩铜矿带为例.
岩石学报,2006,22(4):697-706
|
CSCD被引
58
次
|
|
|
|
18.
Liang H Y. Zircon Ce~(4+)/Ce~(3+) ratios and ages for Yulong orebearing porphyries in eastern Tibet.
Mineralium Deposita,2006,41(2):152-159
|
CSCD被引
129
次
|
|
|
|
19.
Hedenquist J W. Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines.
Economic Geology,1998,93(4):373-404
|
CSCD被引
178
次
|
|
|
|
20.
Hedenquist J W. The role of magmas in the formation of hydrothermal ore-deposits.
Nature,1994,370(6490):519-527
|
CSCD被引
350
次
|
|
|
|
|