Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响
Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy
查看参考文献21篇
文摘
|
采用OM和SEM研究了不同C含量Ni-Fe-Cr合金在950~1050 ℃固溶后的组织变化及其对拉伸性能和晶间腐蚀性能的影响。结果表明,C含量的变化影响固溶处理过程中碳化物的回溶行为和晶粒尺寸,从而造成不同C含量合金力学性能和晶间腐蚀性能的差异。C含量为0.010 %(质量分数)时,950 ℃固溶处理可使热加工过程中产生的M_(23)C_6碳化物完全回溶,并获得平均晶粒尺寸约38 µm的等轴晶组织;C含量增加到0.026%时,固溶温度提高至1000 ℃可使M_(23)C_6碳化物完全回溶,获得平均晶粒尺寸约42 µm的等轴晶组织;C含量在0.010%~0.026%范围内,合金具有较低的晶间腐蚀敏感性,随C含量增加合金的强度升高,延伸率基本没有变化;C含量为0.056%时,1050 ℃固溶处理后,局部区域仍存在未回溶的碳化物,碳化物阻碍晶界迁移使晶粒长大缓慢,造成晶粒尺寸不均匀。同时,未回溶碳化物的存在使合金的强度略有提高,但延伸率降低;未回溶碳化物造成碳化物/基体界面处贫Cr区的出现,显著增加了合金的晶间腐蚀敏感性。 |
其他语种文摘
|
Ni-Fe-Cr alloys have been widely used for petrochemical, chemical and nuclear application due to their superior corrosion resistance and good workability. Nowadays, Ni-Fe-Cr alloys with higher strength are demanded for the engineering application. Increasing the carbon content could enhance the strength of Ni-Fe-Cr alloys due to the solid-solution strengthening effect of interstitial carbon atoms. However, an increase in the carbon content would promote the precipitation of carbides, which would reduce the corrosion resistance. In order to optimize the carbon content and determine the solution treatment, microstructure evolution during solution treatment and its effects on the properties of Ni-Fe-Cr alloys with different carbon content were investigated using OM and SEM. The results show that variation in carbon content affects the carbide dissolution and grain size during solution treatment, which affects the mechanical properties and intergranular corrosion susceptibility of Ni-Fe-Cr alloys. For the Ni-Fe-Cr alloy with carbon content of 0.010%, M_(23)C_6 carbides produced during the hot-working process do not exist after solution treatment at 950 ℃. For the alloy with carbon content of 0.026%, M_(23)C_6 carbides are dissolved into the matrix when the solution temperature increases to 1000 ℃. An increase in the carbon content from 0.010% to 0.026% results in an increased tensile strength and has slightly observable effect on the elongation. The alloys with the carbon content in the range of 0.010%~0.026% have lower intergranular corrosion susceptibility. As the carbon content increases to 0.056%, M_(23)C_6 carbides could not be dissolved even at the solution temperature of 1050 ℃, and inhomogenous grain- size distribution is observed. The presence of undissolved M_(23)C_6 carbide weakens the solid-solution strengthening effect of carbon atoms, and significantly increases the susceptibility to intergranular corrosion. |
来源
|
金属学报
,2018,54(3):385-392 【核心库】
|
DOI
|
10.11900/0412.1961.2017.00210
|
关键词
|
Ni-Fe-Cr合金
;
固溶处理
;
碳化物
;
拉伸性能
;
晶间腐蚀
|
地址
|
中国科学院金属研究所, 中国科学院核用材料与安全评价重点实验室, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-1961 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6205198
|
参考文献 共
21
共2页
|
1.
Pan Y M. Grain-boundary chemistry and intergranular corrosion in alloy 825.
Metall. Mater. Trans.,A,2000,31:1163
|
CSCD被引
7
次
|
|
|
|
2.
Persaud S Y. High resolution analysis of oxidation in Ni-Fe-Cr alloys after exposure to 315℃deaerated water with added hydrogen.
Corros. Sci,2016,106:236
|
CSCD被引
1
次
|
|
|
|
3.
Zhang L N. Influence of cold deformation on the corrosion behavior of Ni-Fe-Cr alloy 028.
J. Alloys Compd,2014,616:235
|
CSCD被引
1
次
|
|
|
|
4.
赵清. 形变及热处理对825合金管材晶界特征分布的影响.
金属学报,2015,51:1465
|
CSCD被引
6
次
|
|
|
|
5.
冯勇. 国产825合金的耐腐蚀性能研究.
中国腐蚀与防护学报,2013,33:164
|
CSCD被引
6
次
|
|
|
|
6.
Ganesan P. Development of a timetemperature transformation diagram for alloy 925.
Corrosion,1988,44:827
|
CSCD被引
9
次
|
|
|
|
7.
赵展. 925镍铁基耐蚀合金均匀化及高温氧化行为.
中国腐蚀与防护学报,2017,37:1
|
CSCD被引
3
次
|
|
|
|
8.
Aytekin H. Characterization of borided incoloy 825 alloy.
Mater. Des,2013,50:515
|
CSCD被引
9
次
|
|
|
|
9.
Rosenberg S J. Solubility of carbon in 18-percentchromium-10-percent-nickel austenite.
J. Res. Natl. Bur. Stand,1952,48:40
|
CSCD被引
1
次
|
|
|
|
10.
Pardo A. Influence of Ti, C and N concentration on the intergranular corrosion behavior of AISI 316Ti and 321 stainless steels.
Acta Mater,2007,55:2239
|
CSCD被引
24
次
|
|
|
|
11.
Gustafson A. Coarsening of TiC in austenitic stainless steelexperiments and simulations in comparison.
Mater. Sci. Eng,A,2000,287:52
|
CSCD被引
8
次
|
|
|
|
12.
崔忠圻.
金属学与热处理. (第2版),2007:226
|
CSCD被引
1
次
|
|
|
|
13.
NSF825.
NAS high corrosion resistant nickel alloy,2011
|
CSCD被引
1
次
|
|
|
|
14.
宋晓艳. 第二相粒子含量对基体晶粒长大影响的计算机仿真研究.
金属学报,2000,36:592
|
CSCD被引
9
次
|
|
|
|
15.
Chen S H. Effect of grain size on the hydrogen embrittlement sensitivity of a precipitation strengthened Fe-Ni based alloy.
Mater. Sci. Eng.,A,2014,594:98
|
CSCD被引
4
次
|
|
|
|
16.
付立铭. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响.
金属学报,2010,46:832
|
CSCD被引
32
次
|
|
|
|
17.
韩利战. X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究.
金属学报,2009,45:1446
|
CSCD被引
18
次
|
|
|
|
18.
华保定. 18铬-8镍型不锈钢的晶间腐蚀与电位的关系.
金属学报,1965,8:103
|
CSCD被引
1
次
|
|
|
|
19.
Crum J R. Precipitation reactions and corrosion resistance of thermally aged and welded alloy 825.
Corrosion 97,1997:520
|
CSCD被引
1
次
|
|
|
|
20.
Kokawa H. Grain-boundary structure and precipitation in sensitized austenitic stainless steel.
JOM,2007,52(7):34
|
CSCD被引
2
次
|
|
|
|
|