基于多源大数据的城市体征诊断指数构建与计算——以上海市为例
Construction and Calculation of Diagnostic Index of Urban Signs Based on Multi-source Big Data: Case of Shanghai
查看参考文献26篇
文摘
|
基于多源大数据,构建了整合城市活动-移动系统、城市人口系统、城市运行系统、城市环境系统4个系统的城市体征诊断指数体系。该指数体系分解为底力、动力、压力、活力4个维度,具有4个层次和12个时空间尺度。底力指数表征土地、人口等空间单元基本属性,用以把握区域总体特征;动力指数通过企业发展状况、环境质量等反映了空间单元的发展状态;压力指数用以监测城市系统运行状况,起到风险评判与预警的作用;活力指数以活动和流的时空特征进行活动动态展现,反映空间单元的真实活力。最后以2016年4月6日为例,计算和展示了上海各街道的综合和各维度体征诊断指数,说明了体征诊断指数的可应用性和指数计算结果的稳健性。城市体征诊断指数可以辅助于城市网格化管理、压力预警等治理需求。 |
其他语种文摘
|
Urban signs characterize the state of development and operation of a city, including construction conditions of built environment,driving force of urban economic and social development, operational status of facilities and urban activities of individuals in the city, etc. The diagnosis of urban signs equals to the health examination of urban development and operation, by which sticking points are recognized. A set of reliable and practical urban diagnostic indices is required not only to comprehensively reflect correlative sub urban systems that are static or dynamic, but also illustrate the status of urban system through quantitative methods and geovisualization. Using traditional data and big data from different sources, this paper constructs a system of diagnostic index of urban signs based upon the integration of urban activity- travel system, urban population system, urban operation system, and urban environment system. The diagnostic index system is decomposed into 4 dimensions including fundamental force, driving force, pressure and vitality. The fundamental force index is used to describe basic attributes of land use and population; the driving force index reflects the state of development of spatial units through development of enterprises and quality of the environment; the pressure index is used to monitor the running status of the urban system, and as such, it plays a role in risk-evaluation and riskwarning; the vitality index reflects the real vitality of the spatial units by demonstrating the dynamic characteristics of the activity system and flows in time and space. 12 spatio-temporal scales are acquired through intersection of 4 levels of the spatial units(municipal Shanghai, district, Jiedao, census tract)and 3 levels of temporal scales(annual,daily and real time levels). The index weight is determined by fuzzy hierarchy analysis. Taking April 6, 2016 as an example, we calculate both comprehensive and dimensional diagnostic index of urban signs of Jiedaos (subdistrict that is sub- divided into several residential communities or neighbourhoods) in Shanghai and elaborate on how the diagnostic index of urban signs corresponds to actual state and facilitates detection of urban problems. Results show that comprehensive diagnostic index varies slightly while considerable variations emerge in diagnostic index of each dimension. Fundamental force index, driving force index and vitality index decline gradually from inner city to suburbs. On the contrary, pressure index increases from inner city to suburbs. Through visual and real-time analysis and evaluation, the diagnostic index of urban signs has huge potential for implementation in urban grid management, pressure warning and other needs of urban governance. |
来源
|
地理科学
,2018,38(1):1-10 【核心库】
|
DOI
|
10.13249/j.cnki.sgs.2018.01.001
|
关键词
|
城市体征
;
城市体征诊断指数
;
健康城市
;
多源数据
;
上海市
|
地址
|
1.
北京大学城市与环境学院, 北京, 100871
2.
北京大学遥感与地理信息系统研究所, 北京, 100871
3.
北京大学信息科学技术学院, 北京, 100871
4.
华东师范大学地理科学学院, 上海, 200241
5.
华东师范大学城市与区域科学学院, 上海, 200062
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0690 |
学科
|
自然地理学 |
基金
|
国家自然科学基金项目
;
国家“十二五”科技支撑计划项目
|
文献收藏号
|
CSCD:6198239
|
参考文献 共
26
共2页
|
1.
国务院.
国家新型城镇化规划(2014~2020年),2014
|
CSCD被引
2
次
|
|
|
|
2.
中共中央办公厅.
2015中央城市工作会议公报,2015
|
CSCD被引
1
次
|
|
|
|
3.
庄少勤. 精细化时代的城市管理.
浦东开发,2007(4):36-39
|
CSCD被引
1
次
|
|
|
|
4.
宋刚. 城市管理复杂性与基于大数据的应对策略研究.
城市发展研究,2014,21(8):72-76
|
CSCD被引
5
次
|
|
|
|
5.
甄峰. 信息时代的地理学与人文地理学创新.
地理科学,2016,35(1):11-18
|
CSCD被引
1
次
|
|
|
|
6.
仇保兴. 智慧城市建设的内容与路径研究.
中国市场,2016(13):3-6
|
CSCD被引
1
次
|
|
|
|
7.
宋唯. 规划和国土资源综合信息监管平台关键技术研究与应用.
上海国土资源,2015(4):52-54
|
CSCD被引
1
次
|
|
|
|
8.
Stedman T L.
Stedman’s medical dictionary for the health professions and nursing,2005
|
CSCD被引
1
次
|
|
|
|
9.
King L S.
Medical thinking: A historical preface,2014
|
CSCD被引
1
次
|
|
|
|
10.
United Nations.
Agenda 21(United Nations Conference on Environment& Development. Rio de Janerio, Brazil, 3 to 14 June 1992),1992
|
CSCD被引
1
次
|
|
|
|
11.
Marsal-Llacuna M L. Lessons in urban monitoring taken from sustainable and livable cities to better address the Smart Cities initiative.
Technological Forecasting and Social Change,2015,90:611-622
|
CSCD被引
6
次
|
|
|
|
12.
倪鹏飞. 城市竞争力的指数构建与因素分析-基于全球500典型城市样本.
城市发展研究,2013,20(6):72-79
|
CSCD被引
2
次
|
|
|
|
13.
Ahvenniemi H. What are the differences between sustainable and smart cities?.
Cities,2017,60:234-245
|
CSCD被引
8
次
|
|
|
|
14.
International Living.
World Rankings: The Best Places to Live,2017
|
CSCD被引
1
次
|
|
|
|
15.
Hedman A. Energy efficiency rating of districts, case Finland.
Energy Policy,2014,65:408-418
|
CSCD被引
1
次
|
|
|
|
16.
吴昉. 基于层次分析法的城市运行评价指标体系研究.
三峡大学学报(人文社会科学版),2008,30(S2):24-26
|
CSCD被引
1
次
|
|
|
|
17.
朱秀美.
城市运行数据监控系统的设计与实现,2011
|
CSCD被引
1
次
|
|
|
|
18.
钱宁. 城市运行体征评价体系研究-以北京,上海,广州和深圳为例.
大众科技,2014,16(6):249-252
|
CSCD被引
1
次
|
|
|
|
19.
李立明.
城市运行系统设计与实现:北京奥运城市运行系统设计理论与实施研究,2009
|
CSCD被引
1
次
|
|
|
|
20.
武利亚. 奥运城市运行监测中心“:数字化”城市管理系统发展新方向.
城市管理与科技,2008,10(4):12-15
|
CSCD被引
2
次
|
|
|
|
|