Achieving superior low temperature and high strain rate superplasticity in submerged friction stir welded Ti-6AI-4V alloy
Ti-6Al-4V合金水下搅拌摩擦焊接头的低温与高应变速率超塑性
查看参考文献26篇
文摘
|
The superplastic forming of Ti alloy welds has great application prospects in producing integrated components. However, the nugget zone (NZ) of the Ti alloy welds, produced by fusion welding or conventional friction stir welding (FSW), consists of lamellar microstructure, which exhibits either low superplasticity or high superplastic temperautre and low strain rate. As a result, the NZ plays a leading role in hindering the superplastic forming of the whole welds. In this study, submerged friction stir welding (SFSW) was conducted in Ti-6A1-4V alloy for the first time, and a defect-free weld with the NZ consisting of a strip microstructure was obtained. The NZ exhibited a low-temperature superplasticity at 600°C, which was the lowest superplastic temperature ever reported in the Ti alloy welds. Besides, at 800°C, the NZ showed high strain rate (3×10~(-2) s~(-1)) superplasticity and a largest elongation of 615% at 1×10~(-3) s~(-1). Compared to conventional FSW joints, the NZ of SFSW joint exhibited a much lower flow stress and a decrease in optimal superplastic temperature by 100°C. This is mainly attributed to the easy globularization of the strip microstructure, enhancing the ability of grain/phase boundary sliding. |
其他语种文摘
|
钛合金焊接接头超塑成型用于生产整体构件具有广泛应用前景.熔焊或常规搅拌摩擦焊(FSW)通常得到具有片层组织的焊核,从而导致过低超塑性、或过高超塑温度以及过低应变速率,成为影响接头整体成型的关键.本研究首次采用水下FSW(SFSW)对Ti-6Al-4V进行焊接,得到焊核为条带组织的无缺陷接头.焊核在600°C下仍具有超塑性,是目前实现钛合金焊接头超塑性的最低温度.此外,焊核可在800°C下和高应变速率(3×10~(-2) s~(-1))下实现超塑性,并在1×10~(-3) s~(-1)下获高达615%的延伸率.与常规FSW相比,SFSW焊核的最佳超塑温度下降了100°C且流变应力大幅下降,其优异超塑性能主要是由于条带组织在超塑变形中极易球化,提高了晶界/相界滑移能力的结果. |
来源
|
Science China. Materials
,2018,61(3):417-423 【核心库】
|
DOI
|
10.1007/s40843-017-9145-4
|
关键词
|
titanium alloys
;
friction stir welding
;
superplasticity
;
microstructure
|
地址
|
Institute of Metal Research, Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Shenyang, 110016
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
2095-8226 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6190416
|
参考文献 共
26
共2页
|
1.
Lutjering G.
Titanium. 2~(nd) ed,2007
|
CSCD被引
1
次
|
|
|
|
2.
Sanders D G. Examination of superplastic forming combined with diffusion bonding for titanium:perspective from experience.
J Mater Eng Performance,2004,13:744-752
|
CSCD被引
7
次
|
|
|
|
3.
Chen S. Superplastic deformation mechanism and mechanical behavior of a laser-welded Ti-6Al-4V alloy joint.
Mater Sci Eng-A,2012,541:110-119
|
CSCD被引
14
次
|
|
|
|
4.
Edwards P. Effect of process conditions on superplastic forming behaviour in Ti-6Al-4V friction stir welds.
Sci Tech Welding Joining,2009,14:669-680
|
CSCD被引
4
次
|
|
|
|
5.
Lu W. Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy.
Mater Des,2012,34:509-515
|
CSCD被引
23
次
|
|
|
|
6.
Mahoney M W. Properties of friction-stir-welded 7075 T651 aluminum.
Metall Mat Trans A,1998,29:1955-1964
|
CSCD被引
60
次
|
|
|
|
7.
Fonda R W. Texture development in near-a Ti friction stir welds.
Acta Mater,2010,58:6452-6463
|
CSCD被引
10
次
|
|
|
|
8.
Wu L H. Microstructural evolution of the thermomechanically affected zone in a Ti-6A1-4V friction stir welded joint.
Scripta Mater,2014,78/79:17-20
|
CSCD被引
16
次
|
|
|
|
9.
Wu L H. Tool wear and its effect on microstructure and properties of friction stir processed Ti-6Al-4V.
Mater Chem Phys,2014,146:512-522
|
CSCD被引
6
次
|
|
|
|
10.
Wang L. Microstructure evolution and superelastic behavior in Ti-35Nb-2Ta-3Zr alloy processed by friction stir processing.
Acta Mater,2017,131:499-510
|
CSCD被引
16
次
|
|
|
|
11.
Bahl S. Processing-microstructurecrystallographic texture-surface property relationships in friction stir processing of titanium.
J Materi Eng Perform,2017,26:4206-4216
|
CSCD被引
1
次
|
|
|
|
12.
Zhou L. The stir zone microstructure and its formation mechanism in Ti-6Al-4V friction stir welds.
Scripta Mater,2009,61:596-599
|
CSCD被引
6
次
|
|
|
|
13.
Ji S. Eliminating the tearing defect in Ti-6Al-4V alloy joint by back heating assisted friction stir welding.
Mater Lett,2017,188:21-24
|
CSCD被引
7
次
|
|
|
|
14.
Zhou L. Effect of rotation speed on microstructure and mechanical properties of Ti-6Al-4V friction stir welded joints.
Mater Des,2010,31:2631-2636
|
CSCD被引
11
次
|
|
|
|
15.
Sanders D G. Characterization of superplastically formed friction stir weld in titanium 6A1-4V:preliminary results.
J Materi Eng Perform,2008,17:187-192
|
CSCD被引
6
次
|
|
|
|
16.
Sanders D G. Effects on the surface texture, superplastic forming, and fatigue performance of titanium 6A1-4V friction stir welds.
J Materi Eng Perform,2010,19:503-509
|
CSCD被引
6
次
|
|
|
|
17.
Ramulu M. Tensile properties of friction stir welded and friction stir welded-superplastically formed Ti-6Al-4V butt joints.
Mater Des,2010,31:3056-3061
|
CSCD被引
9
次
|
|
|
|
18.
Wu L H. Achieving superior low-temperature superplasticity for lamellar microstructure in nugget of a friction stir welded Ti-6A1-4V joint.
Scripta Mater,2016,122:26-30
|
CSCD被引
12
次
|
|
|
|
19.
Wu L H. Achieving superior superplasticity from lamellar microstructure of a nugget in a friction-stir-welded Ti-6Al-4V joint.
Scripta Mater,2015,98:44-47
|
CSCD被引
10
次
|
|
|
|
20.
Mofid M A. Submerged friction-stir welding (SFSW) underwater and under liquid nitrogen:an improved method to join al alloys to mg alloys.
Metall Mat Trans A,2012,43:5106-5114
|
CSCD被引
13
次
|
|
|
|
|