冲击载荷下硼酸改性端羟基聚硅氧烷-二氧化硅复合材料的响应特性
Mechanical Responses of PBDMS-silica under Impact Loading
查看参考文献38篇
文摘
|
为研究硼酸改性端羟基聚硅氧烷-二氧化硅轻质冲击硬化聚合物复合材料抗冲击特性及其机理,进行了单轴压缩、冲击试验;结合高速摄影和数字图像相关技术以及有限元仿真,研究材料的变形过程。结果表明:该材料在准静态载荷下呈黏性流动态,而在动态载荷下呈现固体状态,其流动应力提高了10~4倍以上;当受到冲击载荷时,材料表现出一定的抗冲击性能,且抗冲击性能随着冲击速度和颗粒含量的提高而增强,材料在冲击过程中处于压力-剪力耦合应力状态,剪力所起作用随着冲击速度提高而逐渐增强;高速摄影结果显示,材料在冲击过程中发生阻塞转变,其中动态压缩导致材料局部硬化并表现出抗冲击特性,剪应力决定了材料抗冲击性能的应变率敏感性。因此,提高材料动态剪切响应是改善材料抗冲击性能的最优途径。 |
其他语种文摘
|
The impact testing, quasi-static and dynamic compressions and finite element simulation were performed to investigate the impact-resistant properties and rate-dependence mechanism of an impact-hardening polymer composite (PBDMS-silica). PBDMS-silica shows liquid-to-solid transition under impact loading, and such impact-resistant behavior is volume fraction-dependent and rate-dependent. This is confirmed by over 10~4 times increase in compressive and shear strength in the range from quasi-static to dynamic loading. Finite element method (FEM) shows a compression-shear-coupled stress state in PBDMS-silica during impact loading, and the shear stress plays an increasingly important role in impact resistance. Jamming transition is captured during the deformation of the impact-hardening polymer by high-speed imaging with digital image correlation (DIC) technique. Combined with the mechanical responses, the conclusions are made that jamming transition induced by dynamic compression is the source of impact-resistant behavior, and the dynamic shear during impact determines how such behavior is rate-dependent. This provides a solution for the improvement of impact resistance by strengthening the dynamic shear response of the material. |
来源
|
兵工学报
,2018,39(1):137-145 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2018.01.015
|
关键词
|
冲击硬化聚合物
;
抗冲击性能
;
动态力学响应
;
应变率敏感性
;
阻塞转变
|
地址
|
1.
西北工业大学先进材料与结构研究所, 陕西, 西安, 710072
2.
西安理工大学材料科学与工程学院, 陕西, 西安, 710048
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
力学 |
基金
|
国家自然科学基金重大科研仪器设备研制专项项目
|
文献收藏号
|
CSCD:6187196
|
参考文献 共
38
共2页
|
1.
Hassan T A. Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites.
Materials Science and Engineering: A,2010,527(12):2892-2899
|
CSCD被引
15
次
|
|
|
|
2.
Srivastava A. Improving the impact resistance performance of Kevlar fabrics using silica based shear thickening fluid.
Materials Science and Engineering: A,2011,529(1):224-229
|
CSCD被引
9
次
|
|
|
|
3.
李常胜. 软体防弹衣穿透概率的分析.
兵工学报,2013,34(1):20-24
|
CSCD被引
5
次
|
|
|
|
4.
Norman J. Shear thickening in colloidal dispersions.
Physics Today,2009,62(10):27-32
|
CSCD被引
34
次
|
|
|
|
5.
Ding Z T.
Nonlinear and adaptive systems,2013
|
CSCD被引
1
次
|
|
|
|
6.
Chen W. Tension and compression tests of two polymers under quasi-static and dynamic loading.
Polymer Testing,2002,21(2):113-121
|
CSCD被引
18
次
|
|
|
|
7.
Mulliken A D. Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates.
International Journal of Solids and Structures,2006,43(5):1331-1356
|
CSCD被引
25
次
|
|
|
|
8.
Smith D E. Response of flexible polymers to a sudden elongational flow.
Science,1998,281(5381):1335-1340
|
CSCD被引
7
次
|
|
|
|
9.
Song B. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials.
Experimental Mechanics,2004,44(3):300-312
|
CSCD被引
24
次
|
|
|
|
10.
Liu J. Surface modification of silica and its compounding with polydimethylsiloxane matrix: interaction of modified silica filler with PDMS.
Iranian Polymer Journal,2012,21(9):583-589
|
CSCD被引
5
次
|
|
|
|
11.
魏化震. 石英/低聚倍半硅氧烷改性有机硅透波材料性能研究.
兵工学报,2015,36(12):2350-2357
|
CSCD被引
3
次
|
|
|
|
12.
Bokobza L. Reinforcement of poly(dimethylsiloxane) by sol-gel in situ generated silica and titania particles.
Express Polymer Letters,2010,4(6):355-363
|
CSCD被引
2
次
|
|
|
|
13.
Wu C L. Static and dynamic mechanical properties of polydimethylsiloxane/carbon nanotube nanocomposites.
Thin Solid Films,2009,517(17):4895-4901
|
CSCD被引
3
次
|
|
|
|
14.
Roche M. Dynamic fracture of nonglassy suspensions.
Physical Review Letters,2013,110(14):148304
|
CSCD被引
1
次
|
|
|
|
15.
Von Kann S. Nonmonotonic settling of a sphere in a cornstarch suspension.
Physical Review E-Statistical, Nonlinear, and Soft Matter Physics,2011,84(6):060401
|
CSCD被引
1
次
|
|
|
|
16.
Jiang W. Strain rate-induced phase transitions in an impact-hardening polymer composite.
Applied Physics Letters,2014,104(12):1100
|
CSCD被引
7
次
|
|
|
|
17.
Fan J T. Dynamic compressive mechanical response of a soft polymer material.
Materials and Design,2015,79:73-85
|
CSCD被引
7
次
|
|
|
|
18.
Hoffman R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests.
Journal of Colloid and Interface Science,1974,46(3):491-506
|
CSCD被引
14
次
|
|
|
|
19.
Brady J F. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation.
Journal of Fluid Mechanics,1985,155:105-129
|
CSCD被引
25
次
|
|
|
|
20.
Cheng X. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions.
Science,2011,333(6047):1276
|
CSCD被引
22
次
|
|
|
|
|