帮助 关于我们

返回检索结果

考虑导弹1阶驾驶仪的近似最小加速度峰值导引律
Near-minimax Acceleration Guidance Law with First-order Autopilot

查看参考文献32篇

郭琨   杨树兴 *  
文摘 为避免操纵能力受限的导弹在实现大落角约束时出现控制饱和问题,提出一种考虑系统惯性且加速度峰值近似最小的解析形式组合导引律。通过设计切换点以及后段惯性补偿项,该组合导引律由圆弧-直线导引律和带1阶惯性补偿项的多项式导引律组合而成;通过数学推导,证明了切换点必然存在,且组合导引律的加速度峰值出现在切换点;结合前段圆弧-直线导引律对加速度峰值的优化能力,实现了组合导引律的近似最优性。仿真结果表明:组合导引律的加速度在切换点后不再增大,且落角约束得到了满足;与数值最优解的比较进一步验证了该组合导引律的近似最优性。
其他语种文摘 A hybrid near-minimax acceleration guidance law for first-order lag systems is proposed to avoid the control saturation of missiles with control limits and large impact angle constraint. By designing the switch point and the lag compensation term in the latter phase, the proposed guidance law is composed of a circular arc-straight line guidance phase and a polynomial guidance phase with first-order autopilot compensation. It is proved by mathematical deduction that the switch point must exist and the peak acceleration of the whole trajectory appears at the switch point. Combining the optimization ability of the circular arc-straight line guidance law, the near-optimality of the hybrid guidance law is obtained. Simulated results show that the acceleration does not increase after the switch point, and the impact angle constraint is satisfied. Comparisons with the numerical optimal solutions further verify the near-optimality of the hybrid guidance law.
来源 兵工学报 ,2018,39(1):83-93 【核心库】
DOI 10.3969/j.issn.1000-1093.2018.01.009
关键词 导弹 ; 最小加速度峰值 ; 落角约束 ; 最优控制 ; 1阶驾驶仪 ; 圆弧-直线导引律
地址

北京理工大学宇航学院, 北京, 100081

语种 中文
文献类型 研究性论文
ISSN 1000-1093
学科 武器工业
基金 国家自然科学基金
文献收藏号 CSCD:6187190

参考文献 共 32 共2页

1.  杨树兴. 陆军多管火箭武器的发展与思考. 兵工学报,2016,37(7):1299-1305 CSCD被引 8    
2.  Warga J. Minimizing variational curves restricted to a preassigned set. Transactions on the American Mathematical Society,1964,112(3):432-455 CSCD被引 1    
3.  Miele A. Numerical solution of minimax problems of optimal control, part 1. Journal of Optimization Theory & Applications,1982,38(1):97-109 CSCD被引 1    
4.  Powers W F. A Chebyshev minimax technique oriented to aerospace trajectory optimization problems. AIAA Journal,1972,10(10):1291-1296 CSCD被引 1    
5.  Lu P. Optimal control problems with maximum functional. Journal of Guidance Control, and Dynamics,1991,14(6):1215-1223 CSCD被引 3    
6.  Arutyunov A V. Maximum principle and second-order conditions for minimax problems of optimal control. Journal of Optimization Theory & Applications,1992,75(3):521-533 CSCD被引 1    
7.  Bulirsch R. Abort landing in the presence of windshear as a minimax optimal control problem. Part 1: necessary conditions. Journal of Optimization Theory & Applications,1991,70(1):1-23 CSCD被引 2    
8.  Oberle H J. Numerical treatment of minimax optimal control problems with application to reentry flight path problem. Journal of the Astronautical Sciences,1988,36(1/2):159-178 CSCD被引 1    
9.  Bulirsch R. Abort landing in the presence of windshear as a minimax optimal control problem. Part 2: multiple shooting and homotopy. Journal of Optimization Theory & Applications,1991,70(2):223-254 CSCD被引 2    
10.  郭琨. 加速度峰值最小的落角约束导引律设计. 战术导弹技术,2017(6):76-82 CSCD被引 1    
11.  Patterson M A. GPOPS-II: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Transactions on Mathematical Software,2013,39(3):1-41 CSCD被引 2    
12.  Kim T H. Bias-shaping method for biased proportional navigation with terminal-angle constraint. Journal of Guidance, Control, and Dynamics,2013,36(6):1810-1816 CSCD被引 22    
13.  Tekin R. Switched-gain guidance for impact angle control under physical constraints. Journal of Guidance, Control, and Dynamics,2015,38(2):205-216 CSCD被引 15    
14.  Kim M. Terminal guidance for impact attitude angle constrained flight trajectories. IEEE Transactions on Aerospace and Electronic Systems,1973,9(6):852-859 CSCD被引 133    
15.  Song T L. Time-optimal impact angle control for vertical plane engagements. IEEE Transactions on Aerospace and Electronic Systems,1999,35(2):738-742 CSCD被引 24    
16.  张春妍. 带落角和时间约束的网络化导弹协同制导律. 兵工学报,2016,37(3):431-438 CSCD被引 35    
17.  李强. 一种导弹终端侵彻多约束最优制导方法. 兵工学报,2016,37(6):1131-1137 CSCD被引 5    
18.  Ryoo C K. Optimal guidance law with terminal impact angle constraint. Journal of Guidance, Control, and Dynamics,2005,28(4):724-732 CSCD被引 108    
19.  Weiss M. Optimal linear-quadratic missile guidance laws with penalty on command variability. Journal of Guidance, Control, and Dynamics,2015,38(2):226-237 CSCD被引 7    
20.  Ben-Asher J Z. Minimal-jerk missile guidance law. Journal of Guidance, Control, and Dynamics,2015,38(8):1520-1525 CSCD被引 2    
引证文献 1

1 李继广 具有角速率饱和约束的无人机机动控制设计 控制工程,2021,28(10):1955-1959
CSCD被引 1

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号