被动微波反演土壤水分的L波段新发展及未来展望
Recent advances of L-band application in the passive microwave remote sensing of soil moisture and its prospects
查看参考文献72篇
文摘
|
土壤水分是陆—气交互作用的重要边界条件,在全球水循环和能量循环中扮演着关键角色,直接影响降水、径流、下渗与蒸散发等水文循环过程,并能反映洪涝和干旱的程度。随着第一颗采用被动微波干涉成像技术的SMOS(Soil Moisture and Ocean Salinity)卫星的发射成功,L波段被动微波遥感技术逐渐成为大尺度土壤水分监测的主要手段,促进了“射频干扰的检测与抑制”、“植被光学厚度反演与植被影响校正”以及“土壤粗糙度参数化方案”等关键问题的研究。本文梳理了“基于微波植被指数的L波段多角度数据反演土壤水分算法研究”项目的最新研究成果,同时评述了围绕以上关键技术问题所取得的国内外研究进展,并对土壤水分微波遥感的未来发展进行了展望。 |
其他语种文摘
|
Soil moisture is an important boundary condition of land-atmosphere interactions and plays a major role in the Earth's water and energy cycles. It directly affects the hydrological processes such as precipitation, runoff, infiltration, and evapotranspiration, and can provide direct information for flood and drought monitoring. Accompanied by the continuous development of space science and technology, especially the successful launching of the first L- band satellite mission of Soil Moisture and Ocean Salinity (SMOS) using passive microwave interference imaging technology, L-band passive microwave remote sensing has become a key tool in large-scale soil moisture mapping. New issues regarding L-band application including "detection and mitigation of radio frequency interference", "vegetation optical depth retrieval and vegetation effects correction", and "soil roughness parameterization" have been studied extensively. In this article, we summarize the latest research results of the project "Vegetation effects on soil moisture estimation using multi-angle observations at L-band" funded by the National Natural Science Foundation of China, and review the research progress made regarding the above issues. The future development of soil moisture microwave remote sensing is also prospected. The review of the research progress and the prospect of the cutting-edge issues will be helpful for the demonstration and implementation of China's future satellite missions, and promote the microwave remote sensing of soil moisture and application in eco-hydrology studies at the global and regional scales. |
来源
|
地理科学进展
,2018,37(2):198-213 【核心库】
|
DOI
|
10.18306/dlkxjz.2018.02.003
|
关键词
|
被动微波遥感
;
土壤水分
;
植被光学厚度
;
地表粗糙度
;
L波段
|
地址
|
中国科学院遥感与数字地球研究所, 遥感科学国家重点实验室, 北京, 100101
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1007-6301 |
学科
|
农业基础科学 |
基金
|
国家自然科学基金青年科学基金
;
国家重点研发计划政府间国际科技创新合作重点专项
;
民用航天“十三五”技术预先研究项目
|
文献收藏号
|
CSCD:6171410
|
参考文献 共
72
共4页
|
1.
赵天杰.
被动微波遥感土壤水分. 博士论文,2012
|
CSCD被引
1
次
|
|
|
|
2.
赵天杰. 利用主被动微波数据联合反演土壤水分.
地球科学进展,2009,24(7):769-775
|
CSCD被引
22
次
|
|
|
|
3.
Al Bitar A. Evaluation of SMOS soil moisture products over continental U.S. using the scan/SNOTEL network.
IEEE Transactions on Geoscience and Remote Sensing,2012,50(5):1572-1586
|
CSCD被引
11
次
|
|
|
|
4.
Bindlish R. Global soil moisture from the Aquarius/SAC-D satellite: Description and initial assessment.
IEEE Geoscience and Remote Sensing Letters,2015,12(5):923-927
|
CSCD被引
4
次
|
|
|
|
5.
Bindlish R. A MODIS-based vegetation index climatology.
Proceedings of SPIE 8156, remote sensing and modeling of ecosystems for sustainability VIII. 8156,2011:815603
|
CSCD被引
1
次
|
|
|
|
6.
Chan S K. Assessment of the SMAP passive soil moisture product.
IEEE Transactions on Geoscience and Remote Sensing,2016,54(8):4994-5007
|
CSCD被引
19
次
|
|
|
|
7.
Chen K S. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations.
IEEE Transactions on Geoscience and Remote Sensing,2003,41(1):90-101
|
CSCD被引
107
次
|
|
|
|
8.
Chen L. A parameterized surface emission model at L-band for soil moisture retrieval.
IEEE Geoscience and Remote Sensing Letters,2010,7(1):127-130
|
CSCD被引
6
次
|
|
|
|
9.
Chen Y Y. Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau.
Journal of Geophysical Research: Atmospheres,2017,122(11):5780-5792
|
CSCD被引
21
次
|
|
|
|
10.
Choudhury B J. Effect of surface roughness on the microwave emission from soils.
Journal of Geophysical Research: Oceans,1979,84(C9):5699-5706
|
CSCD被引
33
次
|
|
|
|
11.
Cosh M H. Watershed scale temporal and spatial stability of soil moisture and its role in validating satellite estimates.
Remote Sensing of Environment,2004,92(4):427-435
|
CSCD被引
8
次
|
|
|
|
12.
Cosh M H. Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation.
Journal of Hydrology,2006,323(1/4):168-177
|
CSCD被引
9
次
|
|
|
|
13.
Crow W T. Relevance of time-varying and time-invariant retrieval error sources on the utility of spaceborne soil moisture products.
Geophysical Research Letters,2005,32(24):L24405
|
CSCD被引
4
次
|
|
|
|
14.
Cui Q. An approach for monitoring global vegetation based on multiangular observations from SMOS.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(2):604-616
|
CSCD被引
1
次
|
|
|
|
15.
Dall'Amico J T. First results of SMOS soil moisture validation in the upper danube catchment.
IEEE Transactions on Geoscience and Remote Sensing,2012,50(5):1507-1516
|
CSCD被引
4
次
|
|
|
|
16.
Entekhabi D. The soil moisture active passive (SMAP) mission.
Proceedings of the IEEE,2010,98(5):704-716
|
CSCD被引
82
次
|
|
|
|
17.
Escorihuela M J. A simple model of the bare soil microwave emission at L-band.
IEEE Transactions on Geoscience and Remote Sensing,2007,45(7):1978-1987
|
CSCD被引
8
次
|
|
|
|
18.
Fernandez-Moran R. SMOS-IC: An alternative SMOS soil moisture and vegetation optical depth product.
Remote Sensing,2017,9(5):457
|
CSCD被引
10
次
|
|
|
|
19.
Fernandez-Moran R. Calibrating the effective scattering albedo in the SMOS algorithm: Some first results.
Proceedings of 2016 IEEE international geoscience and remote sensing symposium,2016:826-829
|
CSCD被引
1
次
|
|
|
|
20.
Goodberlet M A. A model of surface roughness for use in passive remote sensing of bare soil moisture.
IEEE Transactions on Geoscience and Remote Sensing,2014,52(9):5498-5505
|
CSCD被引
2
次
|
|
|
|
|