ECMWF地表太阳辐射数据在我国的误差及成因分析
Error Analysis of ECMWF Surface Solar Radiation Data in China
查看参考文献30篇
文摘
|
利用2000-2009年中国气象局(CMA)地表太阳辐射台站资料,对欧洲中期天气预报中心(ECMWF)地表太阳下行短波辐射产品进行多时间尺度的计算与分析,检验ECMWF地表辐射产品对于中国地区太阳辐射特征的表现。本文通过聚类分析将中国地区分为8个区域,考虑到ECMWF大气因素对ECMWF地表辐射的影响和大气因子分布的空间异质性,引入地理探测器对ECMWF再分析辐射产品的时空误差进行定量分析,来判明影响ECMWF辐射精度的主要大气因子。结果表明:总体上看,ECMWF地表太阳辐射要高于地面观测数据,月均偏差为18.28W/m~2;ECMWF地表太阳辐射表现出季节性差异,夏秋季节明显好于春冬季节,相对偏差较大的数据集中分布在12、1、2和3月,相对偏差较小的数据集中分布在6、7、8和9月;不同区域在冬季和夏季的主导大气影响因子不同,夏季中国西北(1区)、高原(3区)、西南(4区)和四川盆地(5区)地区主导影响因子都是气溶胶,东南(6区)地区的主导影响因子是地表反照率和气溶胶,中东部地区(7区)的主导影响因子是云覆盖率和气溶胶,但是因子解释较小,分别为0.0228和0.0202,东北地区(8区)4个因子均未通过显著性系数检验,因子对相对偏差的变化影响不显著;冬季中国西北(1区)、高原(3区)、中东(7区)、东北(8区)和四川盆地(5区)地区的主导影响因子都是云覆盖率,西南(5区)和东南(6区)地区的辐射主要受到气溶胶的影响。 |
其他语种文摘
|
Comparison of surface radiation data of ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis data and data from station observation (China Meteorological Administration) is conducted at different time scales to check whether reanalysis data can reflect the characteristics of surface solar radiation over China. Based on the cluster analysis method, China is divided into 8 regions in order to study the regional differences of the surface radiation products of the ECMWF reanalysis data in China. Taking into account the influence of atmospheric factors on the earth's surface radiation and the spatial stratified heterogeneity of the atmospheric distribution, the geographical detector is used to find the causes of errors in different sites of reanalysis data.?Overall, ECMWF is higher than the ground observation station data and the monthly deviation is 18.2835W/m~2. ECMWF shows seasonal difference, greater deviation in spring and winter, less deviation in summer and autumn. Large relative deviation of the data mainly distributed in December, January, February and March while minor relative deviation of the data mainly concentrated in July, June, August and September. The dominant atmospheric factors in different regions are different in winter and summer. In summer, from zone 1 to 5 the dominant factors are aerosols and the power of determinant is larger. The dominant factors of the zone 6 are albedo and aerosol. The dominant factors of the zone 7 are cloud cover and aerosol but the power of determinant is small, merely 0.0228 and 0.0202, respectively. Failing significance test indicates that the four factors had no significant effect on the relative deviation in the zone 8. In winter, the dominant factors of zone 4, 6, 8 and zone 1, 3, 5, 7 are aerosol and cloud coverage, respectively. |
来源
|
地球信息科学学报
,2018,20(2):254-267 【核心库】
|
DOI
|
10.12082/dqxxkx.2018.170381
|
关键词
|
地表太阳下行辐射
;
ECMWF再分析资料
;
CMA站点
;
地理探测器
;
影响因子
|
地址
|
1.
中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京, 100101
2.
中国科学院大学, 北京, 100049
3.
江苏省地理信息资源开发与利用协同创新中心, 江苏省地理信息资源开发与利用协同创新中心, 南京, 210023
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
大气科学(气象学) |
基金
|
国家自然科学基金项目
;
中国科学院地理科学与资源研究所优秀青年人才基金项目
|
文献收藏号
|
CSCD:6163646
|
参考文献 共
30
共2页
|
1.
Pinker R T. Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project.
Journal of Geophysical Research Atmospheres,2003,108(D22):GCP5-GCP1
|
CSCD被引
7
次
|
|
|
|
2.
Huang G. High resolution surface radiation products for studies of regional energy, hydrologic and ecological processes over Heihe river basin, northwest China.
Agricultural and Forest Meteorology,2016,230:67-78
|
CSCD被引
2
次
|
|
|
|
3.
Betts A K. Comparison of ERA40 and NCEP/DOE near-surface data sets with other ISLSCP-II data sets.
Journal of Geophysical Research Atmospheres,2006,111:D22
|
CSCD被引
1
次
|
|
|
|
4.
Wang K. Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalysis.
Reviews of Geophysics,2013,51(2):150-185
|
CSCD被引
5
次
|
|
|
|
5.
Brotzge J A. A two-Year comparison of the surface water and energy budgets between two OASIS sites and NCEP NCAR reanalysis data.
Journal of Hydrometeorology,2004,5(2):311
|
CSCD被引
1
次
|
|
|
|
6.
Decker M. Evaluation of the Reanalysis Products from GSFC, NCEP, and ECMWF Using Flux Tower Observations.
Journal of Climate,2010,25(25):1916-1944
|
CSCD被引
1
次
|
|
|
|
7.
Lohmann S. Long-term variability of solar direct and global radiation derived from ISCCP data and comparison with reanalysis data.
Solar Energy,2006,80(11):1390-1401
|
CSCD被引
4
次
|
|
|
|
8.
谢爱红. 不同再分析气温在东南极中山站-Dome A断面的适用性评价.
中国科学:地球科学,2014(1):156-168
|
CSCD被引
5
次
|
|
|
|
9.
邓小花. 国外几套再分析资料的对比与分析.
气象科技,2010,38(1):1-8
|
CSCD被引
29
次
|
|
|
|
10.
Wang A. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau.
Journal of Geophysical Research Atmospheres,2012,117(D5):214-221
|
CSCD被引
3
次
|
|
|
|
11.
Xia X A. Analysis of downwelling surface solar radiation in China from National Centers for Environmental Prediction reanalysis, satellite estimates, and surface observations.
Journal of Geophysical Research Atmospheres,2006,111(D9):2105-2117
|
CSCD被引
2
次
|
|
|
|
12.
You Q. Decadal variation of surface solar radiation in the Tibetan Plateau from observations, reanalysis and model simulations.
Climate Dynamics,2013,40(7/8):2073-2086
|
CSCD被引
3
次
|
|
|
|
13.
Yang R. Surface water and energy budgets for the mississippi river basin in three NCEP reanalyses.
Journal of Hydrometeorology,2015,16(2):857-873
|
CSCD被引
2
次
|
|
|
|
14.
Zhang X. Evaluation of the reanalysis surface incident shortwave radiation products from NCEP, ECMWF, GSFC, and JMA using satellite and surface observations.
Remote Sensing,2016,8(3):225
|
CSCD被引
2
次
|
|
|
|
15.
Simmons A. ERAInterim: New ECMWF reanalysis products from 1989 onwards.
ECMWF Newsl. ECMWF Read. UK,2007,110:25-35
|
CSCD被引
1
次
|
|
|
|
16.
Kato S. Surface irradiances consistent with CERES-Derived Top-of-Atmosphere shortwave and longwave irradiances.
Journal of Climate,2013,26(9):2719-2740
|
CSCD被引
8
次
|
|
|
|
17.
Mlawer E J. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave.
Journal of Geophysical Research Atmospheres,1997,102(14):16663-16682
|
CSCD被引
473
次
|
|
|
|
18.
Wielicki B A. Clouds and the Earth's Radiant Energy System (CERES):Algorithm overview?.
IEEE Transactions on Geoscience and Remote Sensing,1998,36(4):1127-1141
|
CSCD被引
9
次
|
|
|
|
19.
Younes S. Quality control of solar radiation data: Present status and proposed new approaches.
Energy,2005,30(9):1533e49
|
CSCD被引
10
次
|
|
|
|
20.
Shi G Y. Data quality assessment and the long-term trend of ground solar radiation in China.
Journal of Applied Meteorology and Climatology,2007,47(4):1006-1016
|
CSCD被引
3
次
|
|
|
|
|