官坝河泥石流发育特征及对四川邛海的泥沙淤积效应
Development of debris flows in Guanba River and its effect on sediment deposition in Qionghai Lake of Sichuan
查看参考文献21篇
文摘
|
晚新生代以来青藏高原的强烈隆升造成青藏高原东南边界形成大量的构造断裂,同时构造拉伸和挤压作用也塑造了许多构造断陷湖泊。近年来很多湖泊的面积和深度逐渐减小,对当地生态环境和社会经济发展带来极大影响。选取青藏高原东南缘的西昌邛海流域为研究区,探讨邛海北岸官坝河泥石流发育特征及对邛海的泥沙淤积效应。研究发现:①官坝河泥石流暴发频率高且规模大,崩塌滑坡和面源侵蚀是泥石流最主要的固体物质来源,动储量约为428.03万m~3;②山洪泥石流的频繁发生是邛海泥沙淤积的主要原因,而频繁地震和强降雨耦合作用控制着区域山洪泥石流活动,预测邛海流域泥石流活动仍将频繁发生,泥沙淤积问题更加严重;③自1950年以来,邛海流域泥沙淤积速率约为17.09 mm/a,如按当前淤积速率推算,邛海的寿命将仅约为600年左右;④建议对官坝河流域实施工程治理和生物防护相结合的综合治理,并加强流域管理和宣传培训等行政法治管理。该成果可为邛海流域综合规划管理和防灾减灾提供参考依据,有助于揭示青藏高原东南缘湖泊逐渐萎缩的真正原因和控制要素。 |
其他语种文摘
|
Since the late-Cenozoic, the strong uplift of Tibetan Plateau not only formed a large number of tectonic fractures on the southeast edge, but also generated many tectonic rift lakes due to structural stretching and compression. However, in recent years, some of the lakes started to shrink and depicted a reduction in lake depth, which has eventually exerted great influence on local ecological environment and socio-economic development. In this paper the Qionghai Lake, located on the southeast edge of the Tibetan Plateau, is selected as the study area. Based on exploring the debris flow characteristics of Guanba river in the north of Qionghai Lake, the effect of sediment deposition deriving from debris flows on Qionghai Lake is analyzed. The research shows that: (1) The scale and frequency of debris flow occurrence is higher in the Guanba River, and the primary material sources are landslide and non-point source erosion with a movable volume of 428.03×10~4 m~3. (2) The frequent occurrence of floods and debris flows are the primary cause of sediment accumulation in the Qionghai Lake, and the debris flows are controlled by the coupling effect of frequent earthquakes and heavy rainfall. It is predicted that debris flows will still occur frequently, and sedimentation disasters will become more severe in the future. (3) Since 1950, the average deposition rate was about 17.09 mm/a. In terms of current deposition rate, it is inferred that the longevity of the Qionghai Lake will be only about 600 years. (4) The comprehensive governance model with management of administrative law is proposed in the Guanba River. The results can not only provide reference bases for planning management and disaster prevention in Qionghai Lake basin, but also contribute to reveal the reason of lake shrinkage on the southeast edge of Tibetan Plateau. |
来源
|
地理学报
,2018,73(1):81-91 【核心库】
|
DOI
|
10.11821/dlxb201801007
|
关键词
|
青藏高原
;
西昌官坝河
;
泥石流
;
四川邛海
;
泥沙淤积
;
构造断陷湖泊
|
地址
|
1.
中国气象局乌鲁木齐沙漠气象研究所, 乌鲁木齐, 830002
2.
新疆维吾尔自治区交通规划勘察设计研究院, 乌鲁木齐, 830006
3.
中国科学院水利部成都山地灾害与环境研究所, 成都, 610041
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
地质学 |
基金
|
中国沙漠气象科学研究基金
;
国家自然科学青年基金项目
;
中国博士后科学基金
|
文献收藏号
|
CSCD:6155249
|
参考文献 共
21
共2页
|
1.
沈吉.
湖泊沉积与环境演化,2010
|
CSCD被引
47
次
|
|
|
|
2.
Hakanson L.
Principle of Lake Sedimentology,1992
|
CSCD被引
1
次
|
|
|
|
3.
Costa J E. Debris flows in small mountain stream channels of Colorado and their hydrologic implications.
Bulletin of the Association of Engineering Geologists,1981,18:309-322
|
CSCD被引
2
次
|
|
|
|
4.
Benda L. Debris flows as agents of morphological heterogeneity at low-order confluences, Olympic Mountains,Washington.
Geological Society of America Bulletin,2003,115:1110-1121
|
CSCD被引
4
次
|
|
|
|
5.
Eaton S L. Role of debris flows in long-term landscape denudation in the central Appalachians of Virginia.
Geology,2003,31:339-342
|
CSCD被引
3
次
|
|
|
|
6.
韦方强. 委内瑞拉1999年特大泥石流灾害.
山地学报,2000,18(6):580-582
|
CSCD被引
20
次
|
|
|
|
7.
冯均佖. 云南滇池湖泊流域水土流失灾害遥感调查.
遥感技术与应用,1994(9):27-29
|
CSCD被引
1
次
|
|
|
|
8.
中国科学院南京地理与湖泊研究所.
云南断陷湖泊环境与沉积,1989
|
CSCD被引
13
次
|
|
|
|
9.
Wieczorek G F. Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California//Costa J E, Wieczorek G F. Debris Flows/Avalanches, Process, Recognition and Mitigation. Geological Society of America.
Reviews in Engineering Geology,1987,7:93-104
|
CSCD被引
3
次
|
|
|
|
10.
Costa J E. Physical geomorphology of debris flows.
Developments and Applications of Geomorphology,1984:269-317
|
CSCD被引
3
次
|
|
|
|
11.
Jakob M. The significance of channel recharge rates for estimating debris-flow magnitude and frequency.
Earth Surface Processes and Landforms,2005,30:755-766
|
CSCD被引
9
次
|
|
|
|
12.
陈景武. 云南东川蒋家沟泥石流暴发与暴雨关系的初步分析.
全国泥石流学术论文集,1980:93-99
|
CSCD被引
5
次
|
|
|
|
13.
崔鹏. 前期降雨对泥石流形成的贡献:以蒋家沟泥石流形成为例.
中国水土保持科学,2003(1):11-15
|
CSCD被引
80
次
|
|
|
|
14.
Tecca P R. Field observations of the June 30, 2001 debris flow at Acquabona (Dolomites, Italy).
Landslides,2009,6:39-45
|
CSCD被引
10
次
|
|
|
|
15.
Huang R. The landslide story.
Nature Geoscience,2013,6(5):325-326
|
CSCD被引
22
次
|
|
|
|
16.
Koi T. Prolonged impact of earthquake-induced landslides on sediment yield in a mountain watershed: The Tanzawa region, Japan.
Geomorphology,2008,101(4):692-702
|
CSCD被引
38
次
|
|
|
|
17.
中国科学院水利部成都山地灾害与环境研究所.
邛海流域官坝河山洪泥石流防治工程勘查报告,2010
|
CSCD被引
2
次
|
|
|
|
18.
余斌. 鹅掌河泥石流对四川邛海影响的初步研究.
湖泊科学,2006,18:57-62
|
CSCD被引
10
次
|
|
|
|
19.
余斌. 四川西昌邛海的浊流沉积初探.
沉积学报,2006,23(4):559-565
|
CSCD被引
1
次
|
|
|
|
20.
云南省环境科学研究院.
邛海流域环境规划总报告. 5,2004:17-19
|
CSCD被引
1
次
|
|
|
|
|