长江中下游流域旱涝急转事件特征分析及其与ENSO的关系
Characteristics of dry-wet abrupt alternation events in the middle and lower reaches of the Yangtze River Basin and their relationship with ENSO
查看参考文献44篇
文摘
|
基于长江中下游流域75个雨量站1960-2015年的日降水资料,通过对原有的旱涝急转指数加以改进,定义了日尺度旱涝急转指数(Dry-Wet Abrupt Alternation Index, DWAAI),全面分析长江中下游流域夏季(5-8月)旱涝急转事件的时空演变特征,并讨论了旱涝急转事件与事件发生前太平洋海表温度的关系。结果表明:①改进的DWAAI综合考虑了事件前后期旱涝差异与急转快慢程度,筛选事件更加全面。②总体来说,自20世纪60年以来,流域内发生旱涝急转事件的区域范围越来越广,事件频率和强度均具有逐年增长趋势。旱涝急转事件主要发生在5月和6月,且汉江水系、中游干流区间、洞庭湖水系北部和鄱阳湖水系西北部地区为事件高发区。③旱涝急转事件与事件发生前Nino 3.4区域海温持续异常偏低存在一定关系。在发生时间上,La Nina现象具有一定的先兆作用,41.04%的事件发生在La Nina现象衰亡期或现象结束后8个月内;在事件强度上,流域内站点的DWAAI与事件发生前第1~6个月的Nino 3.4区域海温异常值存在显著的负相关性,尤其是在鄱阳湖水系和中游干流区间,二者负相关性最强。研究结果可以为长江中下游流域防洪抗旱工作提供一定的依据。 |
其他语种文摘
|
Based on the daily precipitation data from 75 rainfall gauging stations covering 1960-2015 in the middle and lower reaches of the Yangtze River Basin, we analyzed the temporal and spatial distribution characteristics of dry-wet abrupt alternation (DWAA) events during the summer (from May to August) and its relationship with ENSO by defining the daily scale dry-wet abrupt alternation index (DWAAI) based on the modification of original index. The results showed that: (1) Modified DWAAI, which was defined by taking into account the differences of dry-wet degree between the earlier and later periods as well as how slowly or quickly the process changes from dry to wet in the abrupt alteration period, could be used to identify DWAA events accurately and effectively. (2) On the whole, areas where DWAA events occurred had expanded gradually since 1960. Meanwhile, the frequencies and intensities of such events had gradually increased over time. DWAA events mainly occurred in May-June, and the Hanjiang River watershed sub-basin, the middle reaches of the Yangtze River, the northern Dongting Lake watershed sub-basin and the northwestern Poyang Lake watershed subbasin were high-incidence areas of such events. (3) There were some relationships between DWAA events and phenomena of continuously low SST in Nino3.4 region before such events occurred. Specifically, La Nina early-warning reacted to the occurrence of DWAA events. About 41.04% of such events occurred during decline stages of La Nina or within the first 8 months after La Nina ended. In terms of intensity, there were significant negative correlations between DWAAI at all the stations and SST anomalies in Nino 3.4 region within 6 months before DWAA events occurred, especially in the Poyang Lake watershed sub-basin and the middle reaches of the Yangtze River. The conclusions indicated that these methods and results were meaningful for the fighting against drought and flood in the Yangtze River Basin. |
来源
|
地理学报
,2018,73(1):25-40 【核心库】
|
DOI
|
10.11821/dlxb201801003
|
关键词
|
旱涝急转
;
长江中下游流域
;
时空演变特征
;
La Nina
|
地址
|
1.
武汉大学, 水资源与水电工程科学国家重点实验室, 武汉, 430072
2.
黄冈师范学院, 黄冈, 438000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
大气科学(气象学) |
基金
|
国家自然科学基金项目
;
国家重点研发计划项目
;
湖北省科技发展计划项目
|
文献收藏号
|
CSCD:6155245
|
参考文献 共
44
共3页
|
1.
Dai A G. Global variations in droughts and wet spells: 1900-1995.
Geophysical. Research. Letters,1998,25(17):3367-3370
|
CSCD被引
84
次
|
|
|
|
2.
Frich P. Observed coherent changes in climatic extremes during the second half of the twentieth century.
Climate Research,2002,19(3):193-212
|
CSCD被引
256
次
|
|
|
|
3.
May W. Variability and extremes of daily rainfall during the Indian summer monsoon in the period 1901-1989.
Global and Planetary Change,2004,44(1/4):83-105
|
CSCD被引
3
次
|
|
|
|
4.
Djebou D C S. Analysis of watershed topography effects on summer precipitation variability in the southwestern United States.
Journal of Hydrology,2014,511:838-849
|
CSCD被引
6
次
|
|
|
|
5.
Li C H. Relationship between summer rainfall anomalies and sub-seasonal oscillations in South China.
Climate Dynamics,2015,44(1/2):423-439
|
CSCD被引
13
次
|
|
|
|
6.
王胜. 淮河流域主汛期降水气候特征及"旱涝急转"现象.
中国农业气象,2009,30(1):31-34
|
CSCD被引
32
次
|
|
|
|
7.
封国林. 2011年春末夏初长江中下游地区旱涝急转成因初探.
大气科学,2012,36(5):1009-1026
|
CSCD被引
62
次
|
|
|
|
8.
何慧. 广西2013年夏季旱涝急转特征.
热带地理,2014,34(6):767-775
|
CSCD被引
12
次
|
|
|
|
9.
何慧. 华南地区1961-2014年夏季长周期旱涝急转特征.
地理学报,2016,71(1):130-141
|
CSCD被引
25
次
|
|
|
|
10.
Turner A G. Climate change and the South Asian summer monsoon.
Nature Climate Change,2012,2(8):587-595
|
CSCD被引
26
次
|
|
|
|
11.
孙鹏. 东江流域汛期旱涝急转的时空演变特征.
人民珠江,2012,33(5):29-34
|
CSCD被引
9
次
|
|
|
|
12.
罗蔚. 近50年鄱阳湖流域入湖总水量变化与旱涝急转规律分析.
应用基础与工程科学学报,2013,21(5):845-856
|
CSCD被引
20
次
|
|
|
|
13.
Agnese C. Modelling the occurrence of rainy days under a typical Mediterranean climate.
Advances in Water Resources,2013,64:62-76
|
CSCD被引
2
次
|
|
|
|
14.
Gitau W. Spatial coherence and potential predictability assessment of intraseasonal statistics of wet and dry spells over Equatorial Eastern Africa.
International Journal of Climatology,2013,33(12):2690-2705
|
CSCD被引
2
次
|
|
|
|
15.
Langousis A. Statistical framework to simulate daily rainfall series conditional on upper-air predictor variables.
Water Resources Research,2014,50(5):3907-3932
|
CSCD被引
3
次
|
|
|
|
16.
黄茹.
淮河流域旱涝急转事件演变及应对研究,2015
|
CSCD被引
7
次
|
|
|
|
17.
Wu Z W. Occurrence of droughts and floods during the normal summer monsoon in the mid-and lower reaches of the Yangtze River.
Geophysical Research Letters,2006,33(5):L05813
|
CSCD被引
27
次
|
|
|
|
18.
唐明. 沿淮淮北地区旱涝急转的成因及应对措施.
中国水利水电科学研究院学报,2007,5(1):26-32
|
CSCD被引
15
次
|
|
|
|
19.
吴志伟. 正常季风年华南夏季“旱涝并存、旱涝急转”之气候统计特征.
自然科学进展,2007,17(12):1665-1671
|
CSCD被引
28
次
|
|
|
|
20.
Yang S Y. Relationship between an abrupt drought-flood transition over mid-low reaches of the Yangtze River in 2011 and the intra-seasonal oscillation over mid-high latitudes of East Asia.
Acta Meteorologica Sinica,2013,27(2):129-143
|
CSCD被引
15
次
|
|
|
|
|