帮助 关于我们

返回检索结果

太阳高分辨观测图像与全日面像的高精度配准方法
High-accuracy Registration Method of Solar High-resolution Observation Images and Full-disk Solar Images

查看参考文献17篇

冯涛 1   戴伟 1   王瑞 2   季凯帆 1,2 *  
文摘 在太阳观测研究中,高分辨图像与全日面像的配准是一项非常有意义的工作,但由于他们之间存在着旋转、缩放和平移,因此很难高精度地进行匹配。提出一种结合局部统计信息和控制点匹配的图像配准方法,核心思想为将视场等间隔划分为大量重叠的局部区域,通过相关匹配在全日面像上寻找对应的局部区域,然后计算每一对局部区域间的亚像元偏移,根据偏移量确定每一对特征点的坐标位置,据此作为点匹配中的特征控制点;最后根据控制点建立仿射变换的转换方程,采用最小二乘求解整个视场的转换参数,根据解出的参数重新对图像进行迭代,得到收敛后的结果并进行配准。通过对高分辨观测图像和全日面SDO/HMI连续谱图像进行配准,拟合结果的偏差在0.25″以内。
其他语种文摘 In the research of the solar observation,the registration between high-resolution observation images and full-disk solar images is a greatly meaningful work. However,it is difficult to register with high accuracy due to the rotation,scaling and translation between them. This paper presents an image registration method combining local statistical information and control point matching: At first,between the high-resolution observation image and the full-disk solar image parameters are preliminarily estimated about the orientation, scale,and positional parameters. Then the images are pretreated based on the estimated parameters. And then the pretreatment of the field of view is divided into a large number of overlapping local regions equally. Each corresponding local area is determined by the Correlation matching on the full-disk after preprocessing. Next, the sub-pixel offset between each pair of local regions is then measured,and the coordinate positions of the feature point are determined according to the sub-pixel offset between each pair of local regions,which is used as the feature control point in the point matching. Finally,the conversion equations of the affine transformation are established according to the control point,then the least-square method is used to solve the entire field of view of the transformation parameters. The image is reiterated according to the parameters, and the transformation parameters are obtained after the final iteration to register images. By registering the highresolution observation images and the full-disk Solar SDO/HMI continuous spectrum,the deviation of fitting results is within 0.25 arc-seconds.
来源 天文研究与技术 ,2018,15(1):69-77 【核心库】
关键词 太阳图像配准 ; 高分辨图像 ; 全日面图像
地址

1. 昆明理工大学, 云南省计算机技术应用重点实验室, 云南, 昆明, 650500  

2. 中国科学院云南天文台, 云南, 昆明, 650011

语种 中文
文献类型 研究性论文
ISSN 1672-7673
学科 天文学
基金 国家自然科学基金
文献收藏号 CSCD:6153484

参考文献 共 17 共1页

1.  Zitova B. Image registration methods:a survey. Image and Vision Computing,2003,21(11):977-1000 CSCD被引 574    
2.  Mikolajczyk K. Scale & affine invariant interest point detectors. International Journal of Computer Vision,2004,60(1):63-86 CSCD被引 4681    
3.  Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision,2004,60(60):91-110 CSCD被引 4681    
4.  Yan K. PCA-SIFT:a more distinctive representation for local image descriptors. IEEE Computer Society Conference on Computer Vision & Pattern Recognition,2004:506-513 CSCD被引 2    
5.  Hou J. Image matching based on representative local descriptors. International Conference on Advances in Multimedia Modeling,2010:303-313 CSCD被引 1    
6.  Alhwarin F. VF-SIFT:Very Fast SIFT feature matching. Dagm Conference on Pattern Recognition,2010:222-231 CSCD被引 1    
7.  Bay H. SURF:speeded up robust features. Computer Vision & Image Understanding,2006,110(3):404-417 CSCD被引 82    
8.  张开玉. 基于改进SURF的图像配准关键算法研究. 科学技术与工程,2013,13(10):2875-2879 CSCD被引 6    
9.  Pluim J P W. Multual-information-based registration of medical images:a survey. IEEE Transactions on Medical Imaging,2003,22(8):986-1004 CSCD被引 161    
10.  Lewis J P. Fast normalized crossed-correlation. Circuits Systems & Signal Processing,2001,82(2):144-156 CSCD被引 1    
11.  Lee S U. Robust stereo matching using adaptive normalized cross-correlation. IEEE Transactions on Pattern Analysis & Machine Intelligence,2011,33(4):807-822 CSCD被引 15    
12.  高军. 基于模板匹配的图像配准算法. 西安交通大学学报,2007(3):307-311 CSCD被引 12    
13.  Sarvaiya J N. Image registration using log-polar transform and phase correlation. Tencon IEEE Region 10 Conference,2009:1-5 CSCD被引 1    
14.  辛登松. SAR图像的改进相位相关配准方法. 计算机与数字工程,2011,39(8):126-128 CSCD被引 2    
15.  Reddy B S. An FFT-based technique for translation,rotation,and scale-invariant image registration. IEEE Transactions on Image Processing,1996,5(8):1266-1271 CSCD被引 199    
16.  Guo X X. An application of Fourier-Mellin transform in image registration. International Conference on Computer & Information Technology,2005:619-623 CSCD被引 1    
17.  王亮. 基于Fourier-Mellin变换的气象卫星光谱图像配准. 光谱学与光谱分析,2013,33(3):855-858 CSCD被引 4    
引证文献 1

1 季凯帆 太阳局部高分辨观测像的日球坐标自动标定 科学通报,2019,64(16):1738-1746
CSCD被引 1

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号