藏东玉龙斑岩铜矿带磷灰石微量元素地球化学特征研究
Investigation of the geochemical characteristics of apatite trace elements from the Yulong porphyry copper belt,Eastern Tibet
查看参考文献48篇
文摘
|
藏东玉龙斑岩铜矿是我国最大的斑岩型铜矿带。该铜矿带分布有大量的花岗斑岩体,这些斑岩体具有相似的全岩地球化学特征,仅小部分成矿,多数并未发现有工业价值的金属矿床。副矿物磷灰石除具有和全岩高度一致的地球化学属性外,其微量元素含量及比值等对反映成矿过程中的流体演化和岩浆来源具有明显的指示意义。本文对玉龙铜矿带周缘的6个成矿和4个不成矿斑岩体磷灰石进行了主元素和微量元素地球化学特征研究,结果显示含矿斑岩磷灰石富Sr、Ba、 Th、Pb和Zr,贫Y,同时显示出富稀土元素、轻重稀土分馏明显和具Ce正异常的地球化学特征。研究还显示,相对于不成矿斑岩,成矿斑岩磷灰石的Sr/Eu、Sr/Ce、 Sr/Y和Th/U比值相对较低且变化范围相对较小,而Ce/Pb、Lu/Hf比值较高且变化范围较大,La/Yb比值及变化范围与不含矿斑岩接近。此外,成矿斑岩磷灰石高的Ce/Pb和Lu/Hf和低的Sr/Ce、Sr/Eu、Sr/Y和Th/U比值说明成矿斑岩形成于更高的氧逸度环境。 |
其他语种文摘
|
The Yulong porphyry copper deposit, located in the eastern Tibetan Plateau, is the largest porphyry copper deposit belt in China, and has developed large amounts of granitic porphyries that show similar geochemical features. However, only a small portion of these granitic porphyries is metallogenic,because most of them are poor in ore content. The geochemical properties of the accessory mineral apatite are highly consistent with those of the entire rock. Thus,the trace elements and ratios are sensitive indicators for fluid evolution and magma sourcing during the metallogenic process. Herein, we present the major and trace element compositions of six samples of ore-bearing porphyries and four samples of barren porphyries around the Yulong copper deposit belt. The results reveal that apatite grains in ore-bearing porphyries are characterized by enriched Sr,Ba,Th, Pb,Zr, and ∑REE,poor Y,and displayed highly fractionated heavy and light rare earth elements with slightly positive Ce anomalies. Compared to apatites from barren porphyries, the trace element ratios of apatites and their correlations show that most apatites from ore-bearing porphyries have relatively low ratios and narrow ranges of Sr/Eu, Sr/Ce, Sr/Y,and Th/U,and relatively high ratios and large variations of Ce/Pb and Lu/Hf, and approximative ratios and ranges of La/Yb. In addition,the relatively large variations of Ce/Pb and Lu/Hf and relatively low ratios of Sr/Ce, Sr/Eu, Sr/Y, and Th/U indicate that the ore-bearing porphyries were formed in an environment of high oxygen fugacity. |
来源
|
地球化学
,2018,47(1):14-32 【核心库】
|
关键词
|
玉龙斑岩铜矿带
;
含矿斑岩
;
不含矿斑岩
;
磷灰石
;
微量元素
|
地址
|
1.
西北大学地质学系, 大陆动力学国家重点实验室, 陕西, 西安, 710069
2.
中国科学院广州地球化学研究所, 中国科学院矿物学与成矿学重点实验室, 广东, 广州, 510640
3.
中国科学院海洋研究所深海中心, 山东, 青岛, 266071
4.
青岛海洋科学与技术国家实验室, 青岛海洋科学与技术国家实验室, 山东, 青岛, 266237
5.
中国科学院青藏高原地球科学卓越创新中心, 中国科学院青藏高原地球科学卓越创新中心, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
地质学 |
基金
|
国家自然科学基金国家杰出青年科学基金
;
大陆动力学国家重点实验室自主研发课题和中国博士后基金
|
文献收藏号
|
CSCD:6151620
|
参考文献 共
48
共3页
|
1.
马鸿文. 论藏东玉东铜矿带花岗斑岩类的成因类别.
成都理工大学学报(自然科学版),1990,17(3):68-75
|
CSCD被引
2
次
|
|
|
|
2.
张玉泉. 钾玄岩系列:藏东玉龙铜矿带含矿斑岩Sr、Nd、Pb同位素组成.
地质科学,1998,33(3):588-597
|
CSCD被引
1
次
|
|
|
|
3.
Hou Z Q. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet.
Econ Geol,2003,98(1):125-145
|
CSCD被引
209
次
|
|
|
|
4.
Hou Z Q. Yulong deposit eastern Tibet: A high-sulfidation Cu-Au porphyry copper deposit in the eastern Indo-Asian collision zone.
Int Geo Rev,2007,49(3):235-258
|
CSCD被引
30
次
|
|
|
|
5.
谢玉玲. 藏东玉龙斑岩铜矿床多期流体演化与成矿的流体包裹体证据.
岩石学报,2005,21(5):1409-1415
|
CSCD被引
42
次
|
|
|
|
6.
姜耀辉. 玉龙斑岩铜矿含矿与非含矿斑岩元素和同位素地球化学对比研究.
岩石学报,2006,22(10):2561-2566
|
CSCD被引
21
次
|
|
|
|
7.
Liang H Y. Geochronological and geochemical study on the Yulong porphyry copper ore belt in eastern Tibet China.
Mineral Deposit Research: Meeting the Global Challenge,2005:1235-1237
|
CSCD被引
3
次
|
|
|
|
8.
Liang H Y. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during, magnetite alteration.
Econ Geol,2009,104(4):587-596
|
CSCD被引
72
次
|
|
|
|
9.
Liang H Y. Porphyry Cu(Au) deposit promoted by redox decoupling during magnetite alteration in Yulong.
Geochim Cosmochim Acta,2009,73(13):A761
|
CSCD被引
2
次
|
|
|
|
10.
Watson E B. Crystallization thermometers for zircon and rutile.
Contrib Mineral Petrol,2006,151(4):413-433
|
CSCD被引
302
次
|
|
|
|
11.
Harrison T M. The Behavior of apatite during crustal anataxis: Equilibrium and kinetic considerations.
Geochim Cosmochim Acta,1984,48(7):1467-1477
|
CSCD被引
66
次
|
|
|
|
12.
Cherniak D J. Rare earth element diffusion in apatite.
Geochim Cosmochim Acta,2000,64(22):3871-3885
|
CSCD被引
17
次
|
|
|
|
13.
Watson E B. Phosphorus and the rare-earth elements in felsic magmas: An assessment of the role of apatite.
Geochim Cosmochim Acta,1981,45(12):2349-2358
|
CSCD被引
25
次
|
|
|
|
14.
Sawka W N. Fractionation of uranium thorium and rare-earth elements in a vertically zoned granodiorite: Implications for heat production distributions in the Sierra-Nevada batholith California USA.
Geochim Cosmochim Acta,1988,52(5):1131-1143
|
CSCD被引
5
次
|
|
|
|
15.
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalco-genides.
Acta Cryst A,1976,32(5):751-767
|
CSCD被引
1296
次
|
|
|
|
16.
Martin P. Mechanisms involved in thermal diffusion of rare earth elements in apatite.
J Nucl Mater,2000,275(3):268-276
|
CSCD被引
4
次
|
|
|
|
17.
Belousova E A. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type.
J Geochem Explor,2002,76(1):45-69
|
CSCD被引
68
次
|
|
|
|
18.
Tollari N. Experimental effects of pressure and fluorine on apatite saturation in mafic magmas with reference to layered intrusions and massif anorthosites.
Contrib Mineral Petrol,2008,156(2):161-175
|
CSCD被引
4
次
|
|
|
|
19.
Sotnikov V I. The role of metasomatism of enclosing rocks in the balance of CI and F during the ore formation at porphyry Cu-Mo deposits.
Russ Geol Geophys,2006,47(8):937-947
|
CSCD被引
3
次
|
|
|
|
20.
Sotnikov V I. Fluorine and chlorine in magmatic and metasomatic ore processes in the Cu-Mo porphyry deposits of Siberia and Mongolia.
Petrology,2003,11(3):301-304
|
CSCD被引
5
次
|
|
|
|
|