帮助 关于我们

返回检索结果

基于Sentinel-1A极化SAR数据与面向对象方法的山区地表覆被分类
Land Cover Classification in Mountain Areas Based on Sentinel-1A Polarimetric SAR Data and Object Oriented Method

查看参考文献30篇

文摘 地表覆被分类对国土资源调查评估及全球变化具有基础性和关键性意义,但山区由于地形和云雾等的影响,可利用光学遥感影像和其他资源十分稀缺。因此,论文以渝东南山区为研究区,基于Sentinel-1A极化合成孔径雷达(SAR)数据,通过系列预处理,得到后向散射系数值,同时对各类地物的VV/VH极化后向散射系数、纹理、高程和坡度等特征值统计分析,综合这些特征值运用面向对象分类方法对单时相与多时相SAR数据进行地表覆被分类,最后将这两种分类方法与Landsat 8 OLI数据分类作对比。研究表明:1)在同时运用面向对象分类方法的前提下,单时相SAR数据分类和Landsat 8 OLI数据分类精度相当,多时相SAR数据面向对象分类精度最高,总精度为85.65%,Kappa系数为0.829 9;2)与光学数据相比,SAR数据对阔叶林、人工建筑提取有优势,精度提高了10%以上,多时相特征有利于耕地和针阔混交林提取,分类精度比单时相提高了9%左右;3)研究区土地覆被类型以林地为主,占总面积的42.68%,耕地、草灌次之,人工建筑、草地与河流占地面积较少。
其他语种文摘 Land cover classification is fundamental and critical to the investigation and assessment of land resources and the global change. However, the cloud- prone and rainy weather in mountain areas make it difficult to obtain valid optical remote sensing images. In addition, the complexity of terrain also has a negative impact on the accuracy when classifying land covers using only optical remote sensing imagery. Synthetic aperture radar (SAR) can transmit energy at microwave frequencies that are unaffected by weather conditions. This advantage gives SAR all- day and all- weather imaging capability. In this paper, the research area is situated in the mountain areas of Southeast Chongqing. We obtained the backscattering coefficient through a series of preprocessing of the Sentinel-1A polarization data. Then, according to the statistical analyses of VV/VH polarization backscattering coefficients, textures, elevations and slopes of all kinds of land covers, we employed object oriented approach on single temporal and multi- temporal images to improve land cover classification accuracy by combing these features. Finally, we compared the classification results with the result of Landsat 8 OLI data. The research indicated that: 1) The object-oriented classification method with single temporal SAR data has about the same accuracy as the OLI Landsat 8 data, the object-oriented classification with multi-temporal SAR data has the best classification result with the total accuracy 85.65% and Kappa coefficient 0.829 9.2) SAR data have the advantages in extracting broad-leaved forest and artificial building which improve the accuracy by more than 10%. The classification with multi- temporal data has the advantage in the extraction of coniferous and broad-leaved mixed forest and farmland whose accuracy is about 9% higher than that with single temporal data. 3) Forest is the main land cover type in the study area which accounts for 42.68% of the total area, followed by farmland and shrub, and the artificial construction, grassland and river are less.
来源 自然资源学报 ,2017,32(12):2136-2148 【核心库】
DOI 10.11849/zrzyxb.20161306
关键词 Sentinel-1A ; 极化合成孔径雷达 ; 面向对象方法 ; 山区地表覆被分类
地址

西南大学地理科学学院, 岩溶环境重庆市重点实验室, 重庆, 400715

语种 中文
文献类型 研究性论文
ISSN 1000-3037
学科 测绘学
基金 国家自然科学基金项目 ;  中国博士后科学基金
文献收藏号 CSCD:6133221

参考文献 共 30 共2页

1.  马腾. 基于微波遥感极化目标分解的土地覆盖/土地利用分类. 农业工程学报,2015,31(2):259-265 CSCD被引 10    
2.  施建成. 微波遥感地表参数反演进展. 中国科学:地球科学,2012,42(6):814-842 CSCD被引 50    
3.  Schmitta A. The Kennaugh element frame work for multi-scale, multi-polarized, multitemporal and multi-frequency SAR image preparation. ISPRS Journal of Photogrammetry and Remote Sensing,2015,102:122-139 CSCD被引 1    
4.  Li G Y. A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region. ISPRS Journal of Photogrammetry and Remote Sensing,2012,70(3):26-38 CSCD被引 3    
5.  Niu X. Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach. International Journal Remote Sensing,2012,34(1):1-26 CSCD被引 4    
6.  Rodriguez-Galiano V F. Random forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sensing Environment,2012,121(138):93-107 CSCD被引 41    
7.  Mishra V N. Dual-polarimetric C-band SAR data for land use/land cover classification by incorporating textural information. Environmental Earth Sciences,2017,76(1):26 CSCD被引 3    
8.  程乾. 基于高分1号杭州湾南岸滨海陆地土地覆盖信息提取方法研究. 自然资源学报,2015,30(2):350-360 CSCD被引 16    
9.  王彩艳. 基于面向对象的北京市区城市内部用地信息提取. 自然资源学报,2015,30(4):705-714 CSCD被引 12    
10.  翟天林. 基于多源遥感影像融合的武汉市土地利用分类方法研究. 长江流域资源与环境,2016,25(10):1594-1602 CSCD被引 10    
11.  Park N W. Integration of multi-temporal/polarization C-band SAR data sets for land-cover classification. International Journal of Remote Sensing,2008,29(16):4667-4688 CSCD被引 3    
12.  陈媛媛. 基于SVM的极化SAR沿海滩涂分类. 地理空间信息,2015,13(6):150-154 CSCD被引 3    
13.  何彬彬. 多云雾山丘地区遥感定量化理论及应用进展. 电子科技大学学报,2016,45(4):533-550 CSCD被引 4    
14.  王馨爽. 多时相双极化合成孔径雷达干涉测量土地覆盖分类方法. 测绘学报,2015,44(5):553-5402 CSCD被引 1    
15.  Huang C. An assessment of support vector machines for land cover classification. International Journal of Remote Sensing,2002,23(4):725-749 CSCD被引 91    
16.  Yu P. Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty. IEEE Transaction on Geoscience & Remote Sensing,2012,50(4):1302-1317 CSCD被引 28    
17.  Benz U. Object based analysis of polarimetric SAR data in alpha-entropy-anisotropy decomposition using fuzzy classification by eCognition. Proceedings of the IEEE International Geoscience and Remote Sensing Geoscience and Remote Sensing Symposium, IGARSS'01,2001:1427-1429 CSCD被引 1    
18.  Qi Z X. Novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data. Remote Sensing of Environment,2012,118:21-39 CSCD被引 19    
19.  苏伟. 基于多尺度影像分割的面向对象城市土地覆被分类研究——以马来西亚吉隆坡市城市中心区为例. 遥感学报,2007,11(4):521-530 CSCD被引 73    
20.  李雪冬. 面向对象的喀斯特地区土地利用遥感分类信息提取—以贵州毕节地区为例. 中国岩溶,2013,32(2):231-237 CSCD被引 8    
引证文献 8

1 刘焕军 基于裸土期多时相遥感影像特征及最大似然法的土壤分类 农业工程学报,2018,34(14):132-139
CSCD被引 17

2 卢文路 基于Sentinel-1A合成孔径雷达数据和全卷积网络的城市建设用地监测方法研究 干旱区地理,2020,43(3):750-760
CSCD被引 1

显示所有8篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号