轻敲模式下原子力显微镜的能量耗散
ENERGY DISSIPATION IN TAPPING MODE ATOMIC FORCE MICROSCOPY
查看参考文献33篇
文摘
|
原子力显微镜有多种成像模式,其中轻敲模式是最为常用的扫描方式. 轻敲模式能获取样品表面形貌的高度信息和相位信息,其中相位信息具有更多的价值,如能反映样品的表面能、弹性、亲疏水性等. 依据振动力学理论,相位与振动系统的能量耗散有关. 探针样品间的能量耗散对于理解轻敲模式下原子力显微镜的成像机理至关重要,样品特性和测量环境会影响能量耗散. 本文在不考虑毛细力影响下,基于JKR 接触模型,给出了探针样品相互作用下的加卸载曲线,结合原子力显微镜力曲线实验,给出了探针-- 样品分离失稳点的位置,从而计算一个完整接触分离过程的能量耗散,进而讨论考虑表面粗糙度对能量耗散的影响. 在轻敲模式下考虑毛细力影响,通过特征时间对比,证明挤出效应是液桥生成的主导因素,在等容条件下,用数值方法计算了不同相对湿度对能量耗散的影响. 通过一维振子模型,简要说明原子力显微镜相位像与样品表面能、杨氏模量、表面粗糙度、相对湿度之间的关系. 分析表明,表面粗糙度和环境湿度均会引起相位的变化,进而认为它们是引起赝像的因素. |
其他语种文摘
|
There are many imaging modes in atomic force microscopy (AFM), in which the tapping mode is one of the most commonly used scanning methods. Tapping mode can provide height and phase topographies of the sample surface, in which phase topography reflects more valuable information of sample surface, such as surface energy, elasticity, hydrophilic hydrophobic properties and so on. According to the theory of vibration mechanics, the phase is related to the energy dissipation of the vibration system. The dissipation energy between the tip and sample in tapping mode of AFM is a very critical key to understanding the image mechanism. It is affected by sample properties and lab environment. The loading and unloading curves of tip and sample interaction are given based on the JKR model while the capillary force is not considered. The unstable position of jump out between the tip and sample is show,and then the energy dissipation in a complete contact and separate process is calculated. The effect of roughness of sample surfaces on energy dissipation is also discussed. It is provided that the extrusion effect is the dominant fact or in liquid bridge formation by characteristic time contrast when capillary force is considered in tapping mode AFM. The effects of relative humidity on energy dissipation are numerically calculated under isometric conditions. Finally, the relationship between phase image of AFM and sample surface energy, Young's modulus, surface roughness and relative humidity is briefly explained by one-dimensional oscillator model. The analyses show that the difference of surface roughness and ambient humidity can cause phase change, and then they are considered as the cause of artifact images. |
来源
|
力学学报
,2017,49(6):1301-1311 【核心库】
|
DOI
|
10.6052/0459-1879-17-223
|
关键词
|
原子力显微镜
;
相位像
;
黏附
;
液桥
;
能量耗散
;
毛细力
|
地址
|
1.
北京化工大学机电工程学院, 北京, 100029
2.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
机械、仪表工业 |
基金
|
国家自然科学基金
;
非线性力学国家重点实验室开放基金资助项目.
|
文献收藏号
|
CSCD:6123054
|
参考文献 共
33
共2页
|
1.
Binnig G. Atomic force microscope.
Physical Review Letters,1986,56(9):930-933
|
CSCD被引
462
次
|
|
|
|
2.
Binnig G. In touch with atoms.
Reviews of Modern Physics,1999,71(2):s324-s330
|
CSCD被引
4
次
|
|
|
|
3.
Giessibl F J. Advances in atomic force microscopy.
Reviews of Modern Physics,2003,75(3):949-983
|
CSCD被引
58
次
|
|
|
|
4.
Zhong Q. Fractured polymer silica fiber surface studied by tapping mode atomic force microscopy.
Surface Science,1993,290(1/2):L688-L692
|
CSCD被引
16
次
|
|
|
|
5.
Grutter P. Tip artifacts of microfabricated force sensors for atomic force microscopy.
Applied Physics Letters,1992,60(22):2741-2743
|
CSCD被引
2
次
|
|
|
|
6.
Gan Y. Atomic and subnanometer resolution in ambient conditions by atomic force microscopy.
Surface Science Reports,2009,64(3):99-121
|
CSCD被引
6
次
|
|
|
|
7.
Edwards H. Vertical metrology using scanning probe microscopes: Imaging distortions and measurement repeatability.
Journal of Applied Physics,1998,83(8):3952-3971
|
CSCD被引
1
次
|
|
|
|
8.
Ohnesorge F M. Intricate stepline artifact can mimic true atomic resolution in atomic force microscopy.
Physical Review B,2000,61(8):5121-5124
|
CSCD被引
1
次
|
|
|
|
9.
Morton D N. Surface characterization of caramel at the micrometer scale.
Journal of Food Science,2003,68(4):1411-1415
|
CSCD被引
1
次
|
|
|
|
10.
徐金明. 原子力显微镜形貌测量偏差的机理分析及修正方法.
力学学报,2011,43(1):112-121
|
CSCD被引
2
次
|
|
|
|
11.
赵亚溥.
纳米与介观力学,2014
|
CSCD被引
22
次
|
|
|
|
12.
Garcia R. Dynamic atomic force microscopy methods.
Surface Science Reports,2002,47(6/8):197-301
|
CSCD被引
52
次
|
|
|
|
13.
郭万林. 针尖的化学物理力学研究.
力学进展,2005,35(4):585-599
|
CSCD被引
8
次
|
|
|
|
14.
李喜德. 探针实验力学.
实验力学,2007,22(3):217-228
|
CSCD被引
9
次
|
|
|
|
15.
Qian J. Combined dry and wet adhesion between a particle and an elastic substrate.
Journal of Colloid & Interface Science,2016,483:321-333
|
CSCD被引
3
次
|
|
|
|
16.
陈少华. 表面黏附及表面输运的最新研究进展.
固体力学学报,2016,37(4):291-311
|
CSCD被引
4
次
|
|
|
|
17.
Drake B. Imaging crystals, polymers, and processes in water with the atomic force microscope.
Science,1989,243(4898):1586-1589
|
CSCD被引
20
次
|
|
|
|
18.
Anczykowski B. Analysis of the interaction mechanisms in dynamic mode SFM by means of experimental data and computer simulation.
Applied Physics A,1998,66(1):885-889
|
CSCD被引
2
次
|
|
|
|
19.
Garcia R. Phase contrast in tappingmode scanning force microscopy.
Applied Physics A,1998,66(1):309-312
|
CSCD被引
1
次
|
|
|
|
20.
Israelachvili J N.
Intermolecular & Surface Forces,2011
|
CSCD被引
1
次
|
|
|
|
|