凹腔/支板结构亚燃冲压燃烧室性能
Performance of ramjet combustor based on cavity/strut structure
查看参考文献18篇
文摘
|
为了避免基于凹腔火焰稳定器的亚燃冲压燃烧室壁面喷注时燃料与主流空气掺混非均匀性问题和提高燃烧室的性能,提出在亚燃冲压燃烧室中使用支板喷注代替壁面喷注的方案,数值模拟了凹腔/支板结构亚燃冲压燃烧室中燃料分布及流场结构,并分析了支板结构对燃料空气混合及燃烧室性能的影响。研究表明:支板虽然使燃烧室出口的总压恢复系数相对于壁面喷注方式下的降低了6.3%,但能使燃料均匀分布于整个流道内,增强了燃料与空气掺混,使燃烧室出口的混合效率和燃烧效率分别提高了21.4%和20.5%。燃烧效率的提高弥补了采用支板导致的燃烧室内气流的额外总压损失所带来的机械能损失,使得支板喷注时燃烧室出口的比冲提高了39.6%。因此,在亚燃冲压燃烧室中设置凹腔/支板结构,有利于提高燃烧室整体性能。 |
其他语种文摘
|
Strut injection was proposed to replace wall injection in ramjet combustaor,in order to promote the combustion efficiency and avoid the problem of inhomogeneous mixing of fuel and mainstream,which was caused by fuel centralized near the wall with wall injection in ramjet combustor based on cavity flameholder.The distribution of fuel and flow field structure in ramjet combustor based on cavity/strut structure was simulated.The effects of strut on mixing and performance of ramjet combustor were studied.It was found that the strut made homogeneous fuel distribution in the whole flow channel,enhanced the mixing of fuel and air,enhanced the mixing efficiency and combustion efficiency of the combustor exit by 21.4%and 20.5%respectively,although it reduced the total pressure recovery coefficient of the combustor exit by 6.3%compared with that under the wall injection method. The improvement of combustion efficiency made up the additional total pressure loss,and increased the specific impulse of the combustor exit by 39.6%under the strut injection method. Therefore,it is good for improving the combustor performance when the cavity/strut structure is used in ramjet combustor. |
来源
|
航空动力学报
,2017,32(10):2355-2363 【核心库】
|
DOI
|
10.13224/j.cnki.jasp.2017.10.007
|
关键词
|
亚燃冲压燃烧室
;
凹腔/支板结构
;
混合效率
;
燃烧效率
;
支板喷注
|
地址
|
1.
北京航空航天大学能源与动力工程学院, 北京, 100191
2.
中国航空工业集团公司沈阳飞机设计研究所, 沈阳, 110035
3.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-8055 |
学科
|
航空 |
文献收藏号
|
CSCD:6101273
|
参考文献 共
18
共1页
|
1.
Roudakov A S. Flight testing of an axisymmetric scramjet-russian recent acvances.
44th Congress of the International Astronautical Federation,1993
|
CSCD被引
1
次
|
|
|
|
2.
Vinagradov V. Experimental investigation of kerosene fuel combustion in supersonic flow.
Journal of Propulsion and Power,1995,11(1):130-134
|
CSCD被引
20
次
|
|
|
|
3.
Losurdo M.
Numerical simulations of trapped vortex combustors.Feasibility study of TVC integration in traditional GT combustion chambers. AIAA-2006-5140,2006
|
CSCD被引
1
次
|
|
|
|
4.
谭建国. 凹腔型亚燃冲压发动机燃烧效率研究.
航空动力学报,2011,26(6):1415-1419
|
CSCD被引
4
次
|
|
|
|
5.
Semenov V L.
Operating process investigation of hydrogen-fueled scramjet combustor with strut fuel feed system. ISABE 97-7087,1997
|
CSCD被引
2
次
|
|
|
|
6.
Hsu K Y. Experimental study of cavity-strut combustion in supersonic flow.
Journal of Propulsion and Power,2010,26(6):1237-1246
|
CSCD被引
16
次
|
|
|
|
7.
Gerlinger P. Numerical investigation of mixing and combustion enhancement in supersonic combustors by strut induced streamwise vorticity.
Aerospace Science and Technology,2008,12(4):159-168
|
CSCD被引
5
次
|
|
|
|
8.
Fureby C. A computational study of supersonic combustion in strut injector and hypermixer flow fields.
Proceedings of the Combustion Institute,2015,35(2):2127-2135
|
CSCD被引
7
次
|
|
|
|
9.
邓远灏. 亚燃冲压模型燃烧室高空负压试验.
推进技术,2012,33(1):69-72
|
CSCD被引
2
次
|
|
|
|
10.
谭建国. 冲压发动机燃烧室内低频燃烧不稳定试验.
推进技术,2011,32(2):188-190
|
CSCD被引
3
次
|
|
|
|
11.
李庆. 亚燃冲压发动机中凹腔与V槽火焰稳定器性能对比分析.
航空动力学报,2010,25(1):35-40
|
CSCD被引
9
次
|
|
|
|
12.
李庆.
基于凹腔火焰稳定器的亚燃冲压发动机燃烧室点火过程研究,2010
|
CSCD被引
10
次
|
|
|
|
13.
Shih T H. A newk-εeddy viscosity mode for high Reynolds number turbulent flow.
Computers and Fluids,1995,24(3):227-238
|
CSCD被引
600
次
|
|
|
|
14.
Yakhot V. Development of turbulence models for shear flows by a double expansion technique.
Physics of Fluids,1992,4(7):1510-1520
|
CSCD被引
187
次
|
|
|
|
15.
Magnussen B F.
On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. AIAA 81-37570,1981
|
CSCD被引
2
次
|
|
|
|
16.
Gran I R. A numerical study of bluff-body stabilized diffusion flame:Part 2influence of combustion modeling and finite-rate chemistry.
Combustion Science and Technology,1996(1/2/3/4/5/6):119-191
|
CSCD被引
3
次
|
|
|
|
17.
Pope S B. Computationally efficient implementation of combustion chemistry using in-situ adaptive tabulation.
Combustion Theory and Modeling,1997,12(1):41-63
|
CSCD被引
66
次
|
|
|
|
18.
Rogers R C.
Mixing of hydrogen injected from multiple injectors normal to a supersonic airstream. NASA TN D-6476,1971
|
CSCD被引
2
次
|
|
|
|
|