基于贝叶斯机器学习的生态模型参数优化方法研究
Parameters Optimization Method of Ecosystem Model Based on Bayesian Machine Learning
查看参考文献36篇
文摘
|
参数优化方法是准确估计生态模型参数、降低其不确定性的有效手段。本文提出一种基于贝叶斯机器学习的No-U-Turn Sampler(NUTS)生态模型参数优化方法。NUTS是一种高效的参数优化方法,每次取样中利用递归算法生成候选参数集(二叉树)推断参数的后验信息,如果满足约束条件"非U型回转",不断构建子树更新参数;否则,记录本次抽样的"最优"参数集,并开始下一次取样,直到获取足够样本。该算法在每次取样中充分优化参数,避免因随机游走行为产生冗余抽样,提高了参数优化效率。本文以千烟洲亚热带人工针叶林碳通量模拟为例,基于Pymc3框架利用NUTS参数优化方法实现了碳通量(Net Ecosystem Exchange,NEE)模型参数反演,并与Metropolis-Hastings(MH)方法进行对比。结果表明,本文算法的参数值达到稳定波动时的抽样次数减少了85%左右,参数优化效率提升3倍左右。参数优化后,2种NEE模型中7个参数不确定性降低10%~53%。此外,NEE模拟效果明显提升,模拟值与实测值的R~2分别提高23%和17%,RMSE分别降低3%和4%。综上所述,本文提出的参数优化方法对生态领域的参数估计或数据同化工作具有一定的借鉴意义。 |
其他语种文摘
|
Parameter optimization is an effective means for the accurate estimation of ecosystem model parameters and the reduction of the uncertainty in model predictions. We proposed a method for parameter optimization of the ecosystem model,which is based on the Bayesian machine learning and called No-U-Turn-Sampler (NUTS). As an efficient means of parameter optimization,NUTS uses a recursive algorithm to build a set of candidate points to obtain the posterior information of the parameters. If the constraint condition of "Non-U-Turn" is met,subtrees will be built to update parameters. Otherwise,"the optimal" set of parameters from current sample will be recorded,and then the next sampling begin to run until enough samples are taken. This algorithm avoids sampling redundancy caused by random walk and thus improves the efficiency of parameter optimization. Taking the carbon flux simulations of the Qianyanzhou subtropical coniferous plantation as an example,we implemented the parameter inversion of the carbon flux (Net Ecosystem Exchange,NEE) model using the NUTS method based on the Pymc3 framework. The comparison between the inversion results of NUTS and Metropolis-Hastings (MH) shows that the sampling frequency reduces about 85%,and the optimization efficiency increases about 3 times when the parameter values of the NUTS algorithm reaches convergence. The uncertainties of the seven parameters estimated by NUTS in the two NEE models are reduced by 10%-53% compared to MH. The NEE simulation improved significantly,with the R~2 between the simulated values and the observed values increased by 23% and 17%,respectively and the RMSE decreased by 3% and 4%,respectively. In sum,the NUTS parameter optimization method proposed in this paper provides an efficient approach for the parameter optimization in ecosystem modeling. |
来源
|
地球信息科学学报
,2017,19(10):1270-1278 【核心库】
|
DOI
|
10.3724/SP.J.1047.2017.01270
|
关键词
|
NUTS
;
生态模型
;
参数优化
;
MCMC
;
Pymc3
|
地址
|
1.
沈阳农业大学, 中国科学院生态系统网络观测与模拟重点实验室, 沈阳, 110866
2.
中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室, 北京, 100101
3.
沈阳农业大学, 沈阳, 110866
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
数学;自动化技术、计算机技术 |
基金
|
国家重点研发计划
;
国家自然科学基金
;
辽宁省科技计划项目
|
文献收藏号
|
CSCD:6098671
|
参考文献 共
36
共2页
|
1.
Cao M K. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change.
Nature,1998,393(6682):249-252
|
CSCD被引
205
次
|
|
|
|
2.
Pan Y. A large and persistent carbon sink in the world's forests.
Science,2011,333(6045):993-998
|
CSCD被引
1
次
|
|
|
|
3.
Luo Y. Parameter identifiability, constraint, and equifinality in data assimilation with ecosystem models.
Ecological Applications,2009,19(3):571-574
|
CSCD被引
6
次
|
|
|
|
4.
Lin J C. Attributing uncertainties in simulated biospheric carbon fluxes to different error sources.
Global Biogeochemical Cycles,2011,25(2):1-17
|
CSCD被引
4
次
|
|
|
|
5.
刘毅. 环境模型参数优化方法的比较.
环境科学,2002,23(2):1-6
|
CSCD被引
26
次
|
|
|
|
6.
张廷龙. 利用模拟退火算法优化Biome-BGC模型参数.
生态学杂志,2011(2):408-414
|
CSCD被引
14
次
|
|
|
|
7.
Termansen M. The use of genetic algorithms and Bayesian classification to model species distributions.
Ecological Modelling,2006,192(3/4):410-424
|
CSCD被引
4
次
|
|
|
|
8.
孙波扬. 分布式水循环模型的参数优化算法比较及应用.
资源科学,2013(11):2217-2223
|
CSCD被引
2
次
|
|
|
|
9.
Metropolis N. Equation of State by Fast Computing Machines.
Journal of Chemical Physics,1953,21(6):1087-1092
|
CSCD被引
571
次
|
|
|
|
10.
Chib S. Understanding the Metropolis-Hastings Algorithm.
American Statistician,1995,49(4):327-335
|
CSCD被引
52
次
|
|
|
|
11.
Geman S. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images.
IEEE Transactions on Pattern Analysis & Machine Intelligence,1984,6(6):721-741
|
CSCD被引
402
次
|
|
|
|
12.
Zobitz J M. A primer for data assimilation with ecological models using Markov Chain Monte Carlo (MCMC).
Oecologia,2011,167(3):599-611
|
CSCD被引
4
次
|
|
|
|
13.
Ren X. Uncertainty analysis of modeled carbon and water fluxes in a subtropical coniferous plantation.
Journal of Geophysical Research Biogeosciences,2013,118(4):1674-1688
|
CSCD被引
5
次
|
|
|
|
14.
Ricciuto D M. Parameter and prediction uncertainty in an optimized terrestrial carbon cycle model:Effects of constraining variables and data record length.
Journal of Geophysical Research Biogeosciences,2015,116(G1):104-121
|
CSCD被引
2
次
|
|
|
|
15.
Luo Y. Sustainability of terrestrial carbon sequestration:A case study in Duke Forest with inversion approach.
Global Biogeochemical Cycles,2003,17(1):21-21
|
CSCD被引
16
次
|
|
|
|
16.
张黎. 基于模型数据融合的长白山阔叶红松林碳循环模拟.
植物生态学报,2009,33(6):1044-1055
|
CSCD被引
11
次
|
|
|
|
17.
任小丽. 基于模型数据融合的千烟洲亚热带人工林碳水通量模拟.
生态学报,2012,32(23):7313-7326
|
CSCD被引
15
次
|
|
|
|
18.
刘敏.
基于模型数据融合的陆地生态系统碳水通量模拟研究,2011
|
CSCD被引
1
次
|
|
|
|
19.
葛蓉. 基于模型数据融合的中国温带和亚热带典型森林生态系统碳通量模拟.
生态学报,2017,37(5):1409-1420
|
CSCD被引
3
次
|
|
|
|
20.
Salvatier J. PyMC3:Python probabilistic programming framework.
Astrophysics Source Code Library,2016:1-24
|
CSCD被引
1
次
|
|
|
|
|