闪锌矿与方铅矿的LA-ICPMS微量元素地球化学对江西冷水坑银铅锌矿田的成因制约
Genesis of the Lengshuikeng Ag-Pb-Zn Orefield in Jiangxi: Constraint from In-situ LA-ICPMS Analyses of Minor and Trace Elements in Sphalerite and Galena
查看参考文献38篇
文摘
|
冷水坑银铅锌矿田位于江西省贵溪市,是我国重要的银铅锌矿集区。矿田中产有两类特征迥异的矿体,一类为赋存于花岗斑岩体内的细脉浸染状一大脉状矿体,另一类为产于火山碎屑岩夹层中的块状硫化物矿体。然而,目前关于两类矿体的成因及联系还存在争议。本文采用激光剥蚀电感耦合等离子体质谱仪对两类矿体中的闪锌矿和方铅矿进行了微区原位成分的测试,试图根据它们的微量元素特征约束矿床的成因问题。分析结果表明,产于细脉浸染状-大脉状矿体中的闪锌矿具有相对较高的Fe、Mn、Pb、Ag、Cu、Sb、Sn和Tl含量,而产于层控块状硫化物矿体中的闪锌矿具有相对略高的Cd含量。两类矿体中方铅矿的微量元素也存在一定差别,前者具有相对较高的Ag、Sb、Sn和Au含量,而后者具有相对较高的Cd、Bi、Se和Tl。通过与国内外不同成因类型铅锌矿床的综合对比,我们发现冷水坑矿田的闪锌矿具有较低的Zn/Cd比(66~131)、Cd/Fe比(0.06~0.31)和Co含量(多数<10×10~(-6)),以及相对较高的Sn含量(多数>1× 10 ~(-6)),这些特征与火山成因块状硫化物矿床中闪锌矿的特征十分类似,表明它们可能具有类似成因。此外,我们的研究结果表明冷水坑矿田闪锌矿中Fe、Cd、Ag、Sb和Tl等元素主要以类质同象的形式存在,而Cu、Pb和Sn等元素主要以显微包裹体的形式存在。方铅矿中的Ag、Sb、 Cd、Sn和T1等元素以类质同象的形式存在,而Mn、Bi和Se等元素可能以显微包裹体的形式存在。此外,基于闪锌矿一方铅矿共生矿物对的Cd分配系数温度计,获得层控块状硫化物矿体的形成温度为238~246℃,而细脉浸染状一大脉状矿体的形成温度略低,为209~224'C,前者闪锌矿中相对较低的Fe和Mn含量,可能由氧逸度的影响造成。综上所述,我们认为冷水坑矿田两类矿体具有相同的成因机制,成矿流体和成矿物质都主要来自深部岩浆热液.温度、围岩性质及氧逸度是控制两类矿床金属硫化物微量元素差别的重要因素。 |
其他语种文摘
|
The Lengshuikeng Ag-Pb-Zn orefield,located in Guixi County, Jiangxi Province, is one of the important ore cluster areas in China. There are two types of ore bodies in the Lengshuikeng orefield: coarse veins, veinlet, and dissemination ores occur in porphyry granite intrusions,and massive sulfide ore bodies occur in volcanic clastic rock. However, the genesis of both two kinds of ore bodies and their relationship remains controversial. We analyzed the concentration of minor and trace elements in sphalerite and galena from these two types of ore bodies using in-situ LA-ICPMS to constrain genetic mechanism of this deposit. Analytical results show that the sphalerites from coarse veins and veinlet-dissemination ore body have relatively high contents of Fe, Mn, Pb,Ag, Cu,Sb, Sn and Tl,whereas the sphalerites from massive sulfide ore body have much higher content of Cd. There are also some differences in the contents of trace elements between galena from two kinds of ore bodies, much higher content of Ag, Sb, Sn and Au in coarse vein, veinlet-dissemination ore body, and relative higher content of Cd, Bi,Se and Tl in massive sulfide ore body. Comparison study with various genetic Pb-Zn deposits both home and abroad suggests that the sphalerites in the Lengshuikeng orefield have relatively low Zn/Cd (66 ~131), Cd/Fe (0.06 ~0.31) and low content of Co (mostly<10 × 10~(-6)), and relative high contents of Sn (mostly>1 × 10~(_6)), and these features are similar to that of sphalerites from volcanogenic massive sulphide (VMS) deposits, indicating that they may possess same formation process. Our study also confirms that Fe, Cd, Ag, Sb and Tl occur in sphalerite as solid solution and Cu, Pb, and Sn may be present within microscopic inclusions. Ag, Sb, Cd, Sn and Tl occur in galena as solid solution while Mn, Bi and Se occur in galena as microscopic inclusions. By using the Cd-fractionation temperature (Tcd) geothermometer of sphalerite-galena, we obtain the formation temperature of 238~246 ℃ for stratabound massive sulfides ore body and lower temperature of 209~224 ℃ for coarse vein, veinlet-dissemination ore body. Stratabound massive sulfides have relatively low contents of Fe and Mn, which may result from the high oxygen fugacity. In summary, we suggest that the two types of ore bodies in the Lengshuikeng orefield have a same genetic mechanism, with ore-forming fluids and materials originating from deep magmatic fluids. The variations of trace element concentrations in sphalerite and galena cloud are mainly ascribed to the temperature, wall rocks and oxygen fugacity. |
来源
|
地质学报
,2017,91(10):2256-2272 【核心库】
|
关键词
|
银铅锌矿床
;
闪锌矿
;
方铅矿
;
LA-ICPMS
;
矿床成因
;
江西冷水坑
|
地址
|
1.
中国地质科学院地质研究所, 矿床地球化学国家重点实验室, 北京, 100037
2.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0001-5717 |
基金
|
国家973计划
;
国家重点研发计划项目
;
澳大利亚塔斯马尼亚大学国家优秀矿床研究中心科研基金项目
|
文献收藏号
|
CSCD:6094267
|
参考文献 共
38
共2页
|
1.
Beaudoin G. Acicular sphalerite enriched in Ag,Sb,and Cu embedded within color-banded sphalerite from the Kokanee Range, British Columbia, Canada.
The Canadian Mineralogist,2000,38(6):1387-1398
|
CSCD被引
15
次
|
|
|
|
2.
Bethke P M. Distribution of some minor elements between coexisting sulfide minerals.
Economic Geology,1971,66(1):140-163
|
CSCD被引
6
次
|
|
|
|
3.
Bortnikov N S. Sphalerite-galena geothermometers; distribution of cadmium, manganese, and the fractionation of sulfur isotopes.
Economic Geology,1995,90(1):155-180
|
CSCD被引
4
次
|
|
|
|
4.
Cook N J. Trace and minor elements in sphalerite: A LA-ICPMS study.
Geochimica et Cosmochimica Acta,2009,73(16):4761-4791
|
CSCD被引
143
次
|
|
|
|
5.
Dangic A. Minor element distribution between galena and sphalerite as a geothermometer; application to two lead-zinc areas in Yugoslavia.
Economic Geology,1985,80(1):180-183
|
CSCD被引
1
次
|
|
|
|
6.
Danyushevsky L. Routine quantitative multielement analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects.
Geochemistry: Exploration, Environment, Analysis,2011,11(1):51-60
|
CSCD被引
41
次
|
|
|
|
7.
George L. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study.
American Mineralogist,2015,100:548-569
|
CSCD被引
28
次
|
|
|
|
8.
Gottesmann W. Zn/Cd ratios in calcsilicate-hosted sphalerite ores at Tumurtijn-ovoo, Mongolia.
Chemie der Erde-Geochemistry,2007,67(4):323-328
|
CSCD被引
25
次
|
|
|
|
9.
Huston D L. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II,Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems.
Economic Geology,1995,90(5):1167-1196
|
CSCD被引
59
次
|
|
|
|
10.
Ishihara S. Indium and other trace elements in volcanogenic massive sulfide ores from the Kuroko, Besshi and other types in Japan.
Bulletin of the Geological Survey of Japan,2007,58(1/2):7-22
|
CSCD被引
15
次
|
|
|
|
11.
Lockington J A. Trace and minor elements in sphalerite from metamorphosed sulphide deposits.
Mineralogy and Petrology,2014,108(6):873-890
|
CSCD被引
19
次
|
|
|
|
12.
Soares Monteiro L V. Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambrosia and Fagundes sulfide-rich carbonate-hosted Zn-(Pb) deposits, Minas Gerais,Brazil.
Ore Geology Reviews,2006,28(2):201-234
|
CSCD被引
13
次
|
|
|
|
13.
Stoiber R E. Minor elements in sphalerite. Economic Geology, 35(4): 501 ~519. Tu Guangzhi,Gao Zhenmin. 2003. Ore-forming mechanism of the dispersed elements. Bulletin of Chinese Academy of Sciences. Urabe T.1977. Partition of cadmium and manganese between coexisting sphalerite and galena from some Japanese epithermal deposits.
Mineralium Deposita,1940,12(3):319-330
|
CSCD被引
1
次
|
|
|
|
14.
Wang Changming. Geological and isotopic evidence for magmatic-hydrothermal origin of the Ag-Pb-Zn deposits in the Lengshuikeng District, east-central China.
Mineralium Deposita,2014,49(6):733-749
|
CSCD被引
21
次
|
|
|
|
15.
Ye Lin. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study.
Ore Geology Reviews,2011,39(4):188-217
|
CSCD被引
140
次
|
|
|
|
16.
狄永军. 江西冷水坑银铅锌矿田推覆构造的形成时代:来自年代学的约束.
地学前缘,2013,20(4):340-349
|
CSCD被引
9
次
|
|
|
|
17.
丁建华. 武夷山Cu-Pb-Zn多金属成矿带主要成矿地质特征及潜力分析.
地质学报,2016,90(7):1537-1550
|
CSCD被引
11
次
|
|
|
|
18.
韩照信. 秦岭泥盆系铅锌成矿带中闪锌矿的标型特征.
西安工程学院学报,1994,16(1):12-17
|
CSCD被引
14
次
|
|
|
|
19.
胡鹏. 扬子板块北缘马元铅锌矿床闪锌矿LA-ICP-MS微量元素特征与指示意义.
矿物学报,2014,34(4):461-468
|
CSCD被引
29
次
|
|
|
|
20.
黄水保. 冷水坑矿田层状铅锌银矿稳定同位素特征与矿床成因.
华东理工大学学报(自然科学版),2012,35(2):101-110
|
CSCD被引
1
次
|
|
|
|
|