Effects and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae
查看参考文献175篇
文摘
|
Bacillus thuringiensis is a Gram-positive aerobic bacterium that produces insecticidal crystalline inclusions during sporulation phases of the mother cell. The virulence factor, known as parasporal crystals, is composed of Cry and Cyt toxins. Most Cry toxins display a common 3-domain topology. Cry toxins exert intoxication through toxin activation, receptor binding and pore formation in a suitable larval gut environment. The mosquitocidal toxins of Bt subsp. israelensis (Bti) were found to be highly active against mosquito larvae and are widely used for vector control. Bt subsp. jegathesan is another strain which possesses high potency against broad range of mosquito larvae. The present review summarizes characterized receptors for Cry toxins in mosquito larvae, and will also discuss the diversity and effects of 3-D mosquitocidal Cry toxin and the ongoing research for Cry toxin mechanisms generated from investigations of lepidopteran and dipteran larvae. |
来源
|
Insect Science
,2017,24(5):714-729 【核心库】
|
DOI
|
10.1111/1744-7917.12401
|
关键词
|
Bacillus thuringiensis
;
Cry toxins
;
mode of action
;
mosquito
;
receptors
|
地址
|
1.
College of Plant Protection, Shenyang Agricultural University, Shenyang
2.
Department of Entomology, University of Georgia, USA, Athens
|
语种
|
英文 |
文献类型
|
综述型 |
ISSN
|
1672-9609 |
文献收藏号
|
CSCD:6092281
|
参考文献 共
175
共9页
|
1.
Abdul-Rauf M. Mutations of loop 2 and loop 3 residues in domain II of Bacillus thuringiensis Cry1C delta-endotoxin affect insecticidal specificity and initial binding to Spodoptera littoralis and Aedes aegypti midgut membranes.
Current Microbiology,1999,39:94-98
|
CSCD被引
3
次
|
|
|
|
2.
Abdullah M A. Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering.
Applied and Environmental Microbiology,2003,69:5343-5353
|
CSCD被引
6
次
|
|
|
|
3.
Abdullah M A. Manduca sexta (Lepidoptera: Sphingidae) cadherin fragments function as synergists for Cry1A and Cry1C Bacillus thuringiensis toxins against noctuid moths Helicoverpa zea, Agrotis ipsilon and Spodoptera exigua.
Pest Management Science,2009,65:1097-1103
|
CSCD被引
9
次
|
|
|
|
4.
Abdullah M A. Identification of a Bacillus thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus.
BMC Biochemistry,2006,7:16
|
CSCD被引
4
次
|
|
|
|
5.
Adang M J. Diversity of Bacillus thuringiensis crystal toxins and mechanism of action.
Insect Midgut and Insecticidal Proteins,2014:39-87
|
CSCD被引
1
次
|
|
|
|
6.
Alzate O. Ser170 of Bacillus thuringiensis Cry1Ab deltaendotoxin becomes anchored in a hydrophobic moiety upon insertion of this protein into Manduca sexta brush border membranes.
BMC Biochemistry,2009,10:25
|
CSCD被引
1
次
|
|
|
|
7.
Arapinis C. Nucleotide and deduced amino acid sequence of the Bacillus sphaericus 1593M gene encoding a 51.4 kD polypeptide which acts synergistically with the 42 kD protein for expression of the larvicidal toxin.
Nucleic Acids Research,1988,16:7731
|
CSCD被引
1
次
|
|
|
|
8.
Atsumi S. Single amino acid mutation in an ATPbinding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori.
Proceedings of the National Academy of Sciences of the United States of America,2012,109:1591-1598
|
CSCD被引
18
次
|
|
|
|
9.
Banks D J. Bacillus thuringiensis Cry1Ac and Cry1Fa deltaendotoxin binding to a novel 110 kDa aminopeptidase in Heliothis virescens is not N-acetylgalactosamine mediated.
Insect Biochemistry and Molecular Biology,2001,31:909-918
|
CSCD被引
10
次
|
|
|
|
10.
Baxter S W. Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera.
Genetics,2011,189:675-679
|
CSCD被引
25
次
|
|
|
|
11.
Bayyareddy K. Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus(Diptera, Culicidae) larvae.
Insect Biochemistry and Molecular Biology,2009,39:279-286
|
CSCD被引
8
次
|
|
|
|
12.
Berry C. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis.
Applied Environmental Microbiology,2002,68(10):5082-5095
|
CSCD被引
12
次
|
|
|
|
13.
Boonserm P. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications.
Journal of Molecular Biology,2005,348:363-382
|
CSCD被引
23
次
|
|
|
|
14.
Boonserm P. Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution.
Journal of Bacteriology,2006,188:3391-3401
|
CSCD被引
16
次
|
|
|
|
15.
Bravo A. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control.
Toxicon,2007,49:423-435
|
CSCD被引
69
次
|
|
|
|
16.
Bravo A. Bacillus thuringiensis: a story of a successful bioinsecticide.
Insect Biochemistry and Molecular Biology,2011,41:423-431
|
CSCD被引
92
次
|
|
|
|
17.
Brzozowski A M. Structure of the Aspergillus oryzae alpha-amylase complexed with the inhibitor acarbose at 2.0 A resolution.
Biochemistry,1997,36:10837-10845
|
CSCD被引
2
次
|
|
|
|
18.
Burton S L. N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin.
Journal of Molecular Biology,1999,287(5):1011-1022
|
CSCD被引
7
次
|
|
|
|
19.
Butko P. Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses.
Applied and Environmental Microbiology,2003,69:2415-2422
|
CSCD被引
5
次
|
|
|
|
20.
Cabrero P. A conserved domain of alkaline phosphatase expression in Bacillus thuringiensis crystal toxins for mosquito larvae 723 the Malpighian tubules of dipteran insects.
Journal of Experimental Biology,2004,207:3299-3305
|
CSCD被引
2
次
|
|
|
|
|