有机地球化学研究新进展与展望
An Overview and Perspectives on Organic Geochemistry
查看参考文献115篇
文摘
|
阐述了近五年有机地球化学领域的重要研究进展和未来有可能出现新突破的领域。在沉积有机质的性质和结构的认识上有重要进展,由于分子和分子同位素测试技术的进步,发现对有机质参与的地球化学全过程能够进行定性研究。阐述了与烃源岩发育相关的环境与控制因素,但具体形成机制的推断还没有得到沉积记录的验证。生物—有机地球化学在定量环境变化与古生态系统重建研究等方面作出了独特的贡献。未来关于过度型有机质和石油天然气成藏过程定量化重建研究将是有机地球化学有可能出现新突破的领域。新的成份与同位素测定新技术的引入将促进有机地球化学相关研究领域的发展。 |
其他语种文摘
|
The significant achievements and potential new research breakthrough in future of organic geochemistry during the last five years are briefly reviewed. Important progress has been achieved on the property and structure of the sedimentary organic matter. The geochemical process involved by the organic matter has been investigated qualitatively due to the technique progress on the molecular and molecular isotopes. The environmental and controlling factors on the formation of hydrocarbon source rocks have been deciphered, however, the sedimentary records to support the deduction of the formation mechanism of hydrocarbon source rocks have not been found. The bio-organic geochemistry contributed to the quantitative reconstruction of environmental and paleoecological issues. New progress will be achieved on the study of the intermediate type of organic matter and quantitative reconstruction of oil and gas reservoir forming process. Introduction of new techniques in new components and isotopes will further improve investigations of organic geochemistry. |
来源
|
沉积学报
,2017,35(5):968-980 【核心库】
|
DOI
|
10.14027/j.cnki.cjxb.2017.05.009
|
关键词
|
沉积学
;
有机地球化学
;
有机质
|
地址
|
中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广州, 510640
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1000-0550 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
国家973计划
|
文献收藏号
|
CSCD:6088910
|
参考文献 共
115
共6页
|
1.
Rontani J F. Degradation of sterols and terrigenous organic matter in waters of the Mackenzie Shelf, Canadian Arctic.
Organic Geochemistry,2014,75:61-73
|
CSCD被引
5
次
|
|
|
|
2.
Karlsson E S. Contrasting regimes for organic matter degradation in the East Siberian Sea and the Laptev Sea assessed through microbial incubations and molecular markers.
Marine Chemistry,2015,170:11-22
|
CSCD被引
6
次
|
|
|
|
3.
Kolchugin A N. Diagenesis of the palaeo-oil-water transition zone in a Lower Pennsylvanian carbonate reservoir:Constraints from cathodoluminescence microscopy, microthermometry, and isotope geochemistry.
Marine and Petroleum Geology,2016,72:45-61
|
CSCD被引
3
次
|
|
|
|
4.
Simoneit B R T. Biomarker compositions of Glyptostrobus and Metasequoia (Cupressaceae) fossils from the Eocene Buchanan Lake Formation, Axel Heiberg Island, Nunavut, Canada reflect diagenesis from terpenoids of their related extant species.
Review of Palaeobotany and Palynology,2016,235:81-93
|
CSCD被引
1
次
|
|
|
|
5.
Alleon J. Molecular preservation of 1.88 Ga Gunflint organic microfossils as a function of temperature and mineralogy.
Nature Communications,2016,7:11977
|
CSCD被引
5
次
|
|
|
|
6.
Brassell S. Molecular stratigraphy:A new tool for climatic assessment.
Nature,1986,320(6058):129-133
|
CSCD被引
83
次
|
|
|
|
7.
Brasell S C. Palaeoclimatic signals recognized by chemometric treatment of molecular stratigraphic data.
Organic Geochemistry,1986,10(4/6):649-660
|
CSCD被引
11
次
|
|
|
|
8.
Furota S. Long-chain alkenones and related distinctive compounds in the late Miocene and Pliocene sediments from the Gulf of Cadiz, eastern North Atlantic.
Organic Geochemistry,2016,101:166-175
|
CSCD被引
2
次
|
|
|
|
9.
Schouten S. Distributional variations in marine crenarchaeotal membrane lipids:a new tool for reconstructing ancient sea water temperatures?.
Earth and Planetary Science Letters,2002,204(1/2):265-274
|
CSCD被引
107
次
|
|
|
|
10.
Ingalls A E. Signal from the subsurface.
Nature Geoscience,2016,9(8):572-573
|
CSCD被引
1
次
|
|
|
|
11.
Ho S L. Flat meridional temperature gradient in the early Eocene in the subsurface rather than surface ocean.
Nature Geoscience,2016,9(8):606-610
|
CSCD被引
4
次
|
|
|
|
12.
Rampen S W. Long chain 1, 13-and 1, 15-diols as a potential proxy for palaeotemperature reconstruction.
Geochimica et Cosmochimica Acta,2012,84:204-216
|
CSCD被引
15
次
|
|
|
|
13.
Rampen S W. Evaluation of long chain 1, 14-alkyl diols in marine sediments as indicators for upwelling and temperature.
Organic Geochemistry,2014,76:39-47
|
CSCD被引
12
次
|
|
|
|
14.
De Bar M W. Constraints on the application of long chain diol proxies in the Iberian Atlantic margin.
Organic Geochemistry,2016,101:184-195
|
CSCD被引
6
次
|
|
|
|
15.
Dos Santos R A L. Comparison of organic (U_(37)~(K'), TEX_(86)~H, LDI) and faunal proxies (foraminiferal assemblages) for reconstruction of late Quaternary sea surface temperature variability from offshore southeastern Australia.
Paleoceanography,2013,28(3):377-387
|
CSCD被引
4
次
|
|
|
|
16.
Rodrigo-Gamiz M. Sea surface temperature variations in the western Mediterranean Sea over the last 20 kyr:A dual-organic proxy (U_(37)~(K') and LDI) approach.
Paleoceanography,2014,29(2):87-98
|
CSCD被引
3
次
|
|
|
|
17.
Becker K W. Rapid and simultaneous analysis of three molecular sea surface temperature proxies and application to sediments from the Sea of Marmara.
Organic Geochemistry,2015,85:42-53
|
CSCD被引
2
次
|
|
|
|
18.
Sigman D M. Glacial/interglacial variations in atmospheric carbon dioxide.
Nature,2000,407(6806):859-869
|
CSCD被引
66
次
|
|
|
|
19.
Falkowski P. The global carbon cycle:A test of our knowledge of earth as a system.
Science,2000,290(5490):291-296
|
CSCD被引
238
次
|
|
|
|
20.
Jaccard S L. Two modes of change in Southern Ocean productivity over the past million years.
Science,2013,339(6126):1419-1423
|
CSCD被引
17
次
|
|
|
|
|