可降解镁基金属骨缺损修复材料的硏究探索
Research of Biodegradable Mg-Based Metals as Bone Graft Substitutes
查看参考文献51篇
文摘
|
由于各种原因所造成的骨缺损的修复是临床上一项具有挑战的难题,理想的骨修复材料应同时具备良好的生物相容性、骨传导、骨诱导以及成骨功能。自体骨虽然被视为骨修复材料的“金标准”,却存在取骨量有限和取骨区并发症等问题,而人工合成骨修复材料则还不具备骨诱导能力以及成骨性能,因此临床常用的骨移植材料以及骨移植替代材料都存在各自的应用局限。可降解镁基金属(纯Mg和镁合金)由于具有生物可降解、良好的生物相容性以及与骨组织接近的弹性模量和密度等特性受到人们的广泛关注。本文较系统地综述了镁基金属在骨填充应用研宄中的生物学行为,包括良好的促成骨、骨传导能力,潜在的骨诱导作用,以及抗菌、抗肿瘤等独特的生物功能,虽然其在临床应用上仍需要继续研宄探索,但不可否认其在骨缺损修复方面具有巨大的优势和潜力,有望成为新一代骨缺损修复替代材料。 |
其他语种文摘
|
Bone defects are very challenging in orthopedic practice due to a variety of reasons. Bone repair requires four critical elements, biocompatibility, osteoconduction, osteoinduction and osteogenesis. The autografts still exist some problems for applications such as the limitation of available autogenous bones and post-operative complications, although they are considered as the “gold standard" in bony defect repairs. Generally the synthetic bone substitutes do not possess osteoinductive and osteogenic activities. Therefore, the clinical bone grafts and bone-graft substitutes have their own shortcomings in the repair of bone defects. Biodegradable magnesium-based metals, including pure magnesium and magnesium alloys, have been concerned and studied recently due to their biodegradation, good biocompatibility and similar elastic modulus and density with bone tissue. This paper summarizes the biological behavior of magnesium-based metals for bone defects repair application, including ability of promoting osteogenesis, osteoconduction and potential osteoinduction, as well as some particular biofunctions such as antibacterial and antitumor properties. The great advantages and potentials of magnesium in bone defects repair can not be denied as a promising class of bone substitutes, although further researches are still needed for clinical applications. |
来源
|
金属学报
,2017,53(10):1197-1206 【核心库】
|
DOI
|
10.11900/0412.1961.2017.00279
|
关键词
|
骨缺损
;
骨修复
;
促成骨
;
镁基金属
;
生物可降解
|
地址
|
中国科学院金属研究所, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-1961 |
学科
|
基础医学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6088589
|
参考文献 共
51
共3页
|
1.
Greenwald A S. Bone-graft substitutes:Facts, fictions, and applications.
J. Bone Joint Surg. Am,2001,83:98
|
CSCD被引
15
次
|
|
|
|
2.
Finkemeier C G. Bone- grafting and bone- graft substitutes.
J. Bone Joint Surg. Am,2002,84:454
|
CSCD被引
30
次
|
|
|
|
3.
Van Heest A. Bone- graft substitutes.
Lancet,1999,353:S28
|
CSCD被引
5
次
|
|
|
|
4.
Calori G M. The use of bone-graft substitutes in large bone defects:Any specific needs?.
Injury,2011,42:S56
|
CSCD被引
18
次
|
|
|
|
5.
Einhorn T A. Enhancement of fracture- healing.
J. Bone Joint Surg. Am,1995,77:940
|
CSCD被引
38
次
|
|
|
|
6.
Giannoudis P V. Bone substitutes:An update.
Injury,2005,36:S20
|
CSCD被引
60
次
|
|
|
|
7.
Van der Stok J. Bone graft substitutes developed for trauma and orthopaedic surgery.
Ned. Tijdschr. Trauma,2015,23:84
|
CSCD被引
1
次
|
|
|
|
8.
Bhatt R A. Bone graft substitutes.
Hand Clin,2012,28:457
|
CSCD被引
8
次
|
|
|
|
9.
Campana V. Bone substitutes in orthopaedic surgery:From basic science to clinical practice.
J. Mater. Sci. Mater. Med,2014,25:2445
|
CSCD被引
31
次
|
|
|
|
10.
Morone M A. The Marshall R. Urist young investigator award. gene expression during autograft lumbar spine fusion and the effect of bone morphogenetic protein 2.
Clin. Orthop. Relat. Res,1998,351:252
|
CSCD被引
6
次
|
|
|
|
11.
Goldberg V M. The biology of bone grafts.
Orthopedics,2003,26:923
|
CSCD被引
1
次
|
|
|
|
12.
Zipfel G J. Bone grafting.
Neurosurg Focus,2003,14:e8
|
CSCD被引
1
次
|
|
|
|
13.
Baumhauer J. Site selection and pain outcome after autologous bone graft harvest.
Foot Ankle Int,2014,35:104
|
CSCD被引
2
次
|
|
|
|
14.
Charalambides C. Poor results after augmenting autograft with xenograft (Surgibone) in hip revision surgery.
Acta Orthop,2005,76:544
|
CSCD被引
4
次
|
|
|
|
15.
Nandi S K. Orthopaedic applications of bone graft & graft substitutes:A review.
Indian J. Med. Res,2010,132:15
|
CSCD被引
11
次
|
|
|
|
16.
Robin B N. Cytokine- mediated inflammatory reaction following posterior cervical decompression and fusion associated with recombinant human bone morphogenetic protein-2:A case study.
Spine,2010,35:E1350
|
CSCD被引
3
次
|
|
|
|
17.
Song G L. Corrosion mechanisms of magnesium alloys.
Adv. Eng. Mater,1999,1:11
|
CSCD被引
290
次
|
|
|
|
18.
Thormann U. The biocompatibility of de-gradable magnesium interference screws:An experimental study with sheep.
Biomed. Res. Int,2015,2015:943603
|
CSCD被引
6
次
|
|
|
|
19.
Witte F. Biodegradable magnesium scaffolds:Part 1:Appropriate inflammatory response.
J. Biomed. Mater. Res., A,2007,81:748
|
CSCD被引
59
次
|
|
|
|
20.
Staiger M P. Magnesium and its alloys as orthopedic biomaterials:A review.
Biomaterials,2006,27:1728
|
CSCD被引
470
次
|
|
|
|
|