帮助 关于我们

返回检索结果

可降解镁基金属骨缺损修复材料的硏究探索
Research of Biodegradable Mg-Based Metals as Bone Graft Substitutes

查看参考文献51篇

文摘 由于各种原因所造成的骨缺损的修复是临床上一项具有挑战的难题,理想的骨修复材料应同时具备良好的生物相容性、骨传导、骨诱导以及成骨功能。自体骨虽然被视为骨修复材料的“金标准”,却存在取骨量有限和取骨区并发症等问题,而人工合成骨修复材料则还不具备骨诱导能力以及成骨性能,因此临床常用的骨移植材料以及骨移植替代材料都存在各自的应用局限。可降解镁基金属(纯Mg和镁合金)由于具有生物可降解、良好的生物相容性以及与骨组织接近的弹性模量和密度等特性受到人们的广泛关注。本文较系统地综述了镁基金属在骨填充应用研宄中的生物学行为,包括良好的促成骨、骨传导能力,潜在的骨诱导作用,以及抗菌、抗肿瘤等独特的生物功能,虽然其在临床应用上仍需要继续研宄探索,但不可否认其在骨缺损修复方面具有巨大的优势和潜力,有望成为新一代骨缺损修复替代材料。
其他语种文摘 Bone defects are very challenging in orthopedic practice due to a variety of reasons. Bone repair requires four critical elements, biocompatibility, osteoconduction, osteoinduction and osteogenesis. The autografts still exist some problems for applications such as the limitation of available autogenous bones and post-operative complications, although they are considered as the “gold standard" in bony defect repairs. Generally the synthetic bone substitutes do not possess osteoinductive and osteogenic activities. Therefore, the clinical bone grafts and bone-graft substitutes have their own shortcomings in the repair of bone defects. Biodegradable magnesium-based metals, including pure magnesium and magnesium alloys, have been concerned and studied recently due to their biodegradation, good biocompatibility and similar elastic modulus and density with bone tissue. This paper summarizes the biological behavior of magnesium-based metals for bone defects repair application, including ability of promoting osteogenesis, osteoconduction and potential osteoinduction, as well as some particular biofunctions such as antibacterial and antitumor properties. The great advantages and potentials of magnesium in bone defects repair can not be denied as a promising class of bone substitutes, although further researches are still needed for clinical applications.
来源 金属学报 ,2017,53(10):1197-1206 【核心库】
DOI 10.11900/0412.1961.2017.00279
关键词 骨缺损 ; 骨修复 ; 促成骨 ; 镁基金属 ; 生物可降解
地址

中国科学院金属研究所, 沈阳, 110016

语种 中文
文献类型 研究性论文
ISSN 0412-1961
学科 基础医学
基金 国家自然科学基金
文献收藏号 CSCD:6088589

参考文献 共 51 共3页

1.  Greenwald A S. Bone-graft substitutes:Facts, fictions, and applications. J. Bone Joint Surg. Am,2001,83:98 CSCD被引 15    
2.  Finkemeier C G. Bone- grafting and bone- graft substitutes. J. Bone Joint Surg. Am,2002,84:454 CSCD被引 30    
3.  Van Heest A. Bone- graft substitutes. Lancet,1999,353:S28 CSCD被引 5    
4.  Calori G M. The use of bone-graft substitutes in large bone defects:Any specific needs?. Injury,2011,42:S56 CSCD被引 18    
5.  Einhorn T A. Enhancement of fracture- healing. J. Bone Joint Surg. Am,1995,77:940 CSCD被引 38    
6.  Giannoudis P V. Bone substitutes:An update. Injury,2005,36:S20 CSCD被引 60    
7.  Van der Stok J. Bone graft substitutes developed for trauma and orthopaedic surgery. Ned. Tijdschr. Trauma,2015,23:84 CSCD被引 1    
8.  Bhatt R A. Bone graft substitutes. Hand Clin,2012,28:457 CSCD被引 8    
9.  Campana V. Bone substitutes in orthopaedic surgery:From basic science to clinical practice. J. Mater. Sci. Mater. Med,2014,25:2445 CSCD被引 31    
10.  Morone M A. The Marshall R. Urist young investigator award. gene expression during autograft lumbar spine fusion and the effect of bone morphogenetic protein 2. Clin. Orthop. Relat. Res,1998,351:252 CSCD被引 6    
11.  Goldberg V M. The biology of bone grafts. Orthopedics,2003,26:923 CSCD被引 1    
12.  Zipfel G J. Bone grafting. Neurosurg Focus,2003,14:e8 CSCD被引 1    
13.  Baumhauer J. Site selection and pain outcome after autologous bone graft harvest. Foot Ankle Int,2014,35:104 CSCD被引 2    
14.  Charalambides C. Poor results after augmenting autograft with xenograft (Surgibone) in hip revision surgery. Acta Orthop,2005,76:544 CSCD被引 4    
15.  Nandi S K. Orthopaedic applications of bone graft & graft substitutes:A review. Indian J. Med. Res,2010,132:15 CSCD被引 11    
16.  Robin B N. Cytokine- mediated inflammatory reaction following posterior cervical decompression and fusion associated with recombinant human bone morphogenetic protein-2:A case study. Spine,2010,35:E1350 CSCD被引 3    
17.  Song G L. Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater,1999,1:11 CSCD被引 290    
18.  Thormann U. The biocompatibility of de-gradable magnesium interference screws:An experimental study with sheep. Biomed. Res. Int,2015,2015:943603 CSCD被引 6    
19.  Witte F. Biodegradable magnesium scaffolds:Part 1:Appropriate inflammatory response. J. Biomed. Mater. Res., A,2007,81:748 CSCD被引 59    
20.  Staiger M P. Magnesium and its alloys as orthopedic biomaterials:A review. Biomaterials,2006,27:1728 CSCD被引 470    
引证文献 6

1 姚怀 挤压温度对Mg-2.0Zn-0.5Zr-3.0Gd生物降解镁合金组织、力学性能及耐腐蚀性能的影响 中国有色金属学报,2018,28(12):2422-2432
CSCD被引 3

2 姚怀 挤压温度对固溶态Mg-2.0Zn-0.5Zr-3.0Gd合金微观组织及耐腐蚀性能的影响 稀有金属材料与工程,2019,48(6):1982-1989
CSCD被引 7

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号