帮助 关于我们

返回检索结果

一种基于分层多尺度卷积特征提取的坦克装甲目标图像检测方法
Image Detection Method for Tank and Armored Targets Based on Hierarchical Multi-scale Convolution Feature Extraction

查看参考文献27篇

文摘 针对坦克装甲目标的图像检测任务,提出一种基于分层多尺度卷积特征提取的目标检测方法。采用迁移学习的设计思路,在VGG-16网络的基础上针对目标检测任务对网络的结构和参数进行修改和微调,结合建议区域提取网络和目标检测子网络来实现对目标的精确检测。对于建议区域提取网络,在多个不同分辨率的卷积特征图上分层提取多种尺度的建议区域,增强对弱小目标的检测能力;对于目标检测子网络,选用分辨率更高的卷积特征图来提取目标,并额外增加了一个上采样层来提升特征图的分辨率。通过结合多尺度训练、困难负样本挖掘等多种设计和训练方法,所提出的方法在构建的坦克装甲目标数据集上取得了优异的检测效果,目标检测的精度和速度均优于目前主流的检测方法。
其他语种文摘 A target detection method based on hierarchical multi-scale convolution feature extraction is proposed for the image detection of tank and armored targets. The idea of transfer learning is used to mo-dify and fine-tune the structure and parameters of VGG-16 network according to the target detection task,and the region proposal network and the detection sub-network are combined to realize the accurate detection of targets. For the region proposal network,the multi-scale proposals are extracted from the convolution feature maps of different resolutions to enhance the detection capability of small targets. For the object detection sub-network,the feature maps with high-resolution convolution are used to extract the targets,and an upsampling layer is added to enhance the resolution of the feature maps. With the help of multi-scale training and hard negative sample mining,the proposed method achieves the excellent results in the tank and armored target data set,and its detection accuracy and speed are better than the those of current mainstream detection methods.
来源 兵工学报 ,2017,38(9):1681-1691 【核心库】
DOI 10.3969/j.issn.1000-1093.2017.09.003
关键词 兵器科学与技术 ; 目标探测与识别 ; 卷积神经网络 ; 坦克装甲目标 ; 目标检测
地址

装甲兵工程学院控制工程系, 北京, 100072

语种 中文
文献类型 研究性论文
ISSN 1000-1093
学科 自动化技术、计算机技术
基金 总装备部院校科技创新工程项目
文献收藏号 CSCD:6083862

参考文献 共 27 共2页

1.  尹宏鹏. 基于视觉的目标检测与跟踪综述. 自动化学报,2016,42(10):1466-1489 CSCD被引 117    
2.  王铁虎. 精确打击作战与装甲装备未来发展. 兵工学报,2010,31(增刊2):59-65 CSCD被引 2    
3.  郭明玮. 基于支持向量机的目标检测算法综述. 控制与决策,2014,29(2):193-200 CSCD被引 34    
4.  Felzenszwalb P. Object detection with discriminatively trained part based models. IEEE Tran-sactions on Pattern Analysis and Machine Intelligence,2010,32(9):1627-1645 CSCD被引 541    
5.  吴青青. 复杂背景下的颜色分离背景差分目标检测方法. 兵工学报,2013,34(4):501-506 CSCD被引 6    
6.  Krizhevsky A. Image Net classification with deep convolutional neural networks. Proceedings of the 2012 Advances in Neural Information Processing Systems,2012:1097-1105 CSCD被引 15    
7.  Deng J. Image Net: a large-scale hierarchical image database. Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition,2009:248-255 CSCD被引 116    
8.  Girshick R. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587 CSCD被引 197    
9.  Uijlings J R. Selective search for object recognition. International Journal of Computer Vision,2013,104(2):154-171 CSCD被引 437    
10.  Everingham M. The Pascal visual object classes (VOC) challenge. International Journal of Computer Vision,2010,88(2):303-338 CSCD被引 753    
11.  Girshick R. Fast R-CNN. Proceedings of the IEEE 14th International Conference on Computer Vision,2015:1440-1448 CSCD被引 3    
12.  Ren S Q. Faster R-CNN: towards real-time object detection with region proposal networks. Proceedings of the 2015 Advances in Neural Information Processing Systems,2015:91-99 CSCD被引 2    
13.  Lin T Y. Microsoft COCO: common objects in context. Proceedings of the 13th European Conference on Computer Vision,2014:740-755 CSCD被引 173    
14.  Zeiler M D. Visualizing and understanding convolutional neural networks. Proceedings of the 13rd European Conference on Computer Vision,2014:818-833 CSCD被引 1    
15.  Simonyan K. Very deep convolutional networks for large-scale image recognition,2015 CSCD被引 568    
16.  Redmon J. You only look once: unified, real-time object detection,2016 CSCD被引 12    
17.  Liu W. SSD: single shot multi box detector,2016 CSCD被引 1    
18.  Oquab M. Learning and transferring mid-level image representations using convolutional neural networks. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,2014:1717-1724 CSCD被引 13    
19.  石祥滨. 基于深度学习混合模型迁移学习的图像分类. 系统仿真学报,2016,28(1):167-174 CSCD被引 21    
20.  Le Cun Y. Back propagation applied to hand written zip code recognition. Neural Computation,1989,1(4):541-551 CSCD被引 536    
引证文献 14

1 杨洋 基于卷积神经网络的玉米根茎精确识别与定位研究 农业机械学报,2018,49(10):46-53
CSCD被引 17

2 吕攀飞 无人机作战平台的智能目标识别方法 激光与光电子学进展,2019,56(7):071001
CSCD被引 3

显示所有14篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号