双层金属纳米板界面能密度的尺寸效应
SIZE EFFECT OF THE INTERFACE ENERGY DENSITY IN BI-NANO-SCALED-METALLIC PLATES
查看参考文献29篇
文摘
|
界面能密度是表征纳米复合材料与结构界面力学性质的重要物理量.采用分子动力学方法计算了不同面心立方金属晶体构成的双材料纳米薄板结构的界面能密度,分析了界面晶格结构形貌变化及界面效应对原子势能的影响.结果表明:双材料纳米薄板界面具有周期性褶皱状疏密相间的晶格结构形貌,界面上原子势能亦呈现周期性分布特性,而靠近界面的两侧原子势能与板内原子势能具有明显差异.拉格朗日界面能密度和欧拉界面能密度均随双层薄板厚度的增加而增加,最终趋向于块体双材料结构的界面能密度. |
其他语种文摘
|
The interface free energy density is an important quantity characterizing the mechanical property of interface in nanocomposite systems. In this paper, molecular dynamics simulation method is adopted to investigate the interface energy density of different FCC metallic bi-nano-scaled plates. The morphology of the interface crystal structure and the interface effect on the atomic potential are analyzed. It is found that interface atoms have periodically wrinkled rarefied or serried configurations, and the potential energy of interface atoms is also periodically distributed. The potential energy of atoms near the interface is obviously different from that of atoms inside the nano-plates. Both the Lagrange interface energy and the Eulerian one increase with the increase of the thickness of the bi-material, which approach the interface energy of a bulk bi-material finally. |
来源
|
力学学报
,2017,49(5):978-984 【核心库】
|
DOI
|
10.6052/0459-1879-17-142
|
关键词
|
双材料金属界面
;
分子动力学
;
界面能密度
;
尺寸效应
;
界面形貌
|
地址
|
1.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
2.
北京理工大学先进结构技术研究院, 轻量化多功能复合材料与结构北京市重点实验室, 北京, 100081
3.
北京理工大学先进结构技术研究院, 轻量化多功能复合材料与结构北京市重点实验室;;北京电动车辆协同创新中心, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
北京理工大学科研创新计划资助项目
|
文献收藏号
|
CSCD:6083696
|
参考文献 共
29
共2页
|
1.
Gleiter H. Nanostructured materials: Basic concepts and microstructure.
Acta Materialia,2000,48(1):1-29
|
CSCD被引
134
次
|
|
|
|
2.
Muller P. Elastic effects on surface physics.
Surface Science Reports,2004,54(5/8):157-258
|
CSCD被引
9
次
|
|
|
|
3.
Ibach H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures.
Surface Science Reports,1997,29(5/6):195-263
|
CSCD被引
11
次
|
|
|
|
4.
张玉龙.
纳米复合材料手册,2005
|
CSCD被引
8
次
|
|
|
|
5.
Gurtin M E. Surface stress in solids.
International Journal of Solids and Structures,1978,14(6):431-440
|
CSCD被引
74
次
|
|
|
|
6.
Gurtin M E. A continuum theory of elastic material surfaces.
Archive for Rational Mechanics and Analysis,1975,57(4):291-323
|
CSCD被引
134
次
|
|
|
|
7.
Sharma P. Size-dependent Eshelby's tensor for embedded nano-inclusions incorporating surface/interface energies.
Journal of Applied Mechanics,2004,71(5):663-671
|
CSCD被引
17
次
|
|
|
|
8.
Mogilevskaya S G. The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nano-composites.
Composites Science and Technology,2010,70(3):427-434
|
CSCD被引
3
次
|
|
|
|
9.
Duan H. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress.
Journal of the Mechanics and Physics of Solids,2005,53(7):1574-1596
|
CSCD被引
35
次
|
|
|
|
10.
Li Z. Stress concentration around a nano-scale spherical cavity in elastic media: Effect of surface stress.
European Journal of Mechanics-A/Solids,2006,25(2):260-270
|
CSCD被引
6
次
|
|
|
|
11.
Li P. Differential scheme for the effective elastic properties of nano-particle composites with interface effect.
Computational Materials Science,2011,50(11):3230-3237
|
CSCD被引
3
次
|
|
|
|
12.
Dai M. Non-circular nano-inclusions with interface effects that achieve uniform internal strain fields in an elastic plane under anti-plane shear.
Archive of Applied Mechanics,2016,86(7):1295-1309
|
CSCD被引
2
次
|
|
|
|
13.
Huang Z. A theory of hyperelasticity of multi-phase media with surface/interface energy effect.
Acta Mechanica,2006,182(3/4):195-210
|
CSCD被引
5
次
|
|
|
|
14.
Wang Z Q. The effects of surface tension on the elastic properties of nano structures.
International Journal of Engineering Science,2010,48(2):140-150
|
CSCD被引
13
次
|
|
|
|
15.
Gao X. A curvature-dependent interfacial energy-based interface stress theory and its applications to nano-structured materials: (I) General theory.
Journal of the Mechanics and Physics of Solids,2014,66:59-77
|
CSCD被引
5
次
|
|
|
|
16.
Miller R E. Size-dependent elastic properties of nanosized structural elements.
Nanotechnology,2000,11(3):139
|
CSCD被引
80
次
|
|
|
|
17.
Mi C. Atomistic calculations of interface elastic properties in noncoherent metallic bilayers.
Physical Review B,2008,77(7):075425
|
CSCD被引
8
次
|
|
|
|
18.
Paliwal B. Atomistic-continuum interphase model for effective properties of composite materials containing nano-inhomogeneities.
Philosophical Magazine,2011,91(30):3905-3930
|
CSCD被引
4
次
|
|
|
|
19.
Chen S. Elastic theory of nanomaterials based on surface-energy density.
Journal of Applied Mechanics,2014,81(12):121002
|
CSCD被引
14
次
|
|
|
|
20.
Yao Y. An interface energy density-based theory considering the coherent interface effect in nanomaterials.
Journal of the Mechanics and Physics of Solids,2017,99:321-337
|
CSCD被引
5
次
|
|
|
|
|