城市交通热点区域的空间交互网络分析
Spatial interaction network analysis of urban traffic hotspots
查看参考文献22篇
文摘
|
城市热点区域是人们频繁活动的体现,利用人们的出行可构建空间交互网络。目前的相关研究主要集中于对热点提取方法及其动态变化的研究,对交通热点的交互作用及其构成的空间交互网络的研究还很少。本文以武汉市的出租车轨迹为数据源,利用基于时空数据场的聚类方法提取城市交通热点区域;基于复杂网络理论与方法,分析城市交通热点区域之间的空间交互作用。通过研究发现:①节假日,热点区域之间的往返交互较多;工作日,热点区域之间的交互较少;②节假日,影响力较大的节点为车站、机场等;工作日,影响力较大的节点是社区和工作地;③社团探测发现,工作日跨越长江的交互较多,非工作日跨越长江的交互较少。上述研究结论可为交通管理部门针对节假日和工作日分别制定不同的交通管理政策和方法提供参考。 |
其他语种文摘
|
Urban traffic hotspots refer to the areas where residents visit frequently. Travels of urban residents generate interactions between urban areas, which form a spatial interactive network. Existing research mainly focuses on hotspot extraction and their dynamic change, but there are few studies that examine the interaction of traffic hotspots and the spatial interaction network. Based on the taxi trajectory data in Wuhan City, we detect the urban traffic hotspots by spatiotemporal data field clustering and further analyze the spatial interaction among urban hotspots based on the complex network theory. The results show that: (1) There is a large amount of interaction between the hotspots on holidays, and less interaction between the hotspots on weekdays; (2) The nodes with great influence are the bus and train stations, airports, and so on, on holidays, and the nodes with great influence are normally residential communities, workplace, and so on, on weekdays; (3) The results of community detection found that there is more interaction across the Yangtze River on weekdays, and little interaction across the Yangtze River on holidays. The study results can provide a reference for traffic management to develop different management strategies and methods for holidays and workdays. Investigating the interaction of human behaviors with urban environment, transportation, and geographical regions from the viewpoint of spatial interaction network is an innovative interdisciplinary research field crossing geographical information science, management science, and humanities and social sciences. |
来源
|
地理科学进展
,2017,36(9):1149-1157 【核心库】
|
DOI
|
10.18306/dlkxjz.2017.09.011
|
关键词
|
城市交通热点
;
空间交互网络
;
复杂网络
;
社区探测
;
轨迹聚类
;
时空数据场
;
武汉市
|
地址
|
1.
武汉大学遥感信息工程学院, 地球空间信息技术协同创新中心, 武汉, 430079
2.
广州市城市规划勘测设计研究院, 广州, 510060
3.
武汉大学遥感信息工程学院, 武汉, 430079
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-6301 |
学科
|
综合运输 |
基金
|
国家重点研发计划项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:6081275
|
参考文献 共
22
共2页
|
1.
淦文燕. 一种基于数据场的层次聚类方法.
电子学报,2006,34(2):258-262
|
CSCD被引
44
次
|
|
|
|
2.
龚玺. 时空轨迹聚类方法研究进展.
地理科学进展,2011,30(5):522-534
|
CSCD被引
19
次
|
|
|
|
3.
李德毅.
不确定性人工智能,2005
|
CSCD被引
293
次
|
|
|
|
4.
李德毅. 人工智能与认知物理学.
中国人工智能学会第10届全国学术年会论文集,2003
|
CSCD被引
1
次
|
|
|
|
5.
李婷. 人类活动轨迹的分类、模式和应用研究综述.
地理科学进展,2014,33(7):938-948
|
CSCD被引
36
次
|
|
|
|
6.
吴涛.
图像分割的认知物理学方法研究,2012
|
CSCD被引
1
次
|
|
|
|
7.
杨格格. 北京对外交通枢纽乘客OD时空分布特征.
地球信息科学学报,2016,18(10):1374-1383
|
CSCD被引
8
次
|
|
|
|
8.
赵鹏祥.
基于轨迹聚类的城市热点区域提取与分析方法研究,2015
|
CSCD被引
7
次
|
|
|
|
9.
Barabasi A L. Emergence of scaling in random networks.
Science,1999,286:509-512
|
CSCD被引
2396
次
|
|
|
|
10.
Barrat A. Modeling the evolution of weighted networks.
Physical Review E,2004,70(6):066149
|
CSCD被引
44
次
|
|
|
|
11.
Chang H W. Context-aware taxi demand hotspots prediction.
International Journal of Business Intelligence and Data Mining,2010,5(1):3-18
|
CSCD被引
12
次
|
|
|
|
12.
Fortunato S. Community detection in graphs.
Physics Reports,2010,486(3/5):75-174
|
CSCD被引
313
次
|
|
|
|
13.
Newman M E J. Finding and evaluating community structure in networks.
Physical Review E,2004,69(2):026113
|
CSCD被引
1576
次
|
|
|
|
14.
Qin K. Hotspots detection from trajectory data based on spatiotemporal data field clustering.
Proceedings of the 3rd international conference on spatial data mining and geographical knowledge services,2017
|
CSCD被引
1
次
|
|
|
|
15.
Rae A. From spatial interaction data to spatial interaction information? Geovisualisation and spatial structures of migration from the 2001 UK census.
Computers, Environment and Urban Systems,2009,33(3):161-178
|
CSCD被引
4
次
|
|
|
|
16.
Scholz R W. Detection of dynamic activity patterns at a collective level from large-volume trajectory data.
International Journal of Geographical Information Science,2014,28(5):946-963
|
CSCD被引
8
次
|
|
|
|
17.
Watts D J. Collective dynamics of 'smallword' network.
Nature,1998,393:440-442
|
CSCD被引
2835
次
|
|
|
|
18.
Zhao P X. A trajectory clustering approach based on decision graph and data field for detecting hotspots.
International Journal of Geographical Information Science,2017,31(6):1101-1127
|
CSCD被引
7
次
|
|
|
|
19.
Zheng Y. Mining interesting locations and travel sequences from GPS trajectories.
Proceedings of the 18th international conference on world wide web,2009:791-800
|
CSCD被引
45
次
|
|
|
|
20.
Zhong C. Detecting the dynamics of urban structure through spatial network analysis.
International Journal of Geographical Information Science,2014,28(11):2178-2199
|
CSCD被引
44
次
|
|
|
|
|