磁小体膜蛋白Mms6功能与应用硏究进展
Research Progress on the Function and Application of Membrane Protein Mms6 of Magnetosome
查看参考文献52篇
文摘
|
磁小体是趋磁细菌的内膜内陷形成的一种特殊生物矿化产物。磁小体在细胞内呈现为链状,外部有一层生物膜包裹,内部是四氧化三铁纳米晶体。这些磁性纳米晶体有着高度均一的尺寸和形貌。目前大量研究结果表明磁小体膜上的蛋白与铁离子的富集、氧化还原反应以及晶体成核、生长有着重要的关系。综述了趋磁细菌从吸收铁离子到矿化形成磁性纳米颗粒过程中,磁小体膜蛋白的功能,重点介绍了六号特殊膜蛋白Mms6的结构特性与功能。同时总结了 Mms6作为一种仿生的添加剂在新型磁性纳米材料中的应用,并且讨论了 Mms6在磁小体形成中可能的分子调节机制,旨为进一步了解生物矿化机制提供思路。 |
其他语种文摘
|
The magnetosome is a special biomineralized product formed by the invagination of the magnetotactic bacteria ( MTB ) inner membrane. Magnetosome is composed of membrane-enclosed magnetite crystals ordered into chains along the cell. Moreover, these magnetic nanocrystals are highly homogeneous in size and morphology. The magnetosome membrane protein has been demonstrated to play an important role in the formation of magnetosome with recruitment and redox of iron and regulation of the nucleation and growth of magnetic nanocrystals. This article reviews that the main function of protein in magnetosome membrane in the process of the formation of magnetic nanoparticles from the absorption of iron ions into mineralization. Especially,the article introduces the structure characteristics and functions of the magnetosome membrane special protein 6 ( Mms6 ) . Furthermore, the article summarizes the application of Mms6,as a biomimic addictive in the new-type magnetic nanomaterials,and discusses its possible mechanism of molecular regulation during the process of the formation of magnetosome,for providing a better understanding of biomineralization. |
来源
|
生物技术通报
,2017,33(9):48-55 【扩展库】
|
DOI
|
10.13560/j.cnki.biotech.bull.1985.2017-0170
|
关键词
|
磁小体
;
生物矿化
;
Mms6蛋白
;
仿生材料合成
|
地址
|
中国科学院强磁场科学中心, 合肥, 230031
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1002-5464 |
学科
|
微生物学 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6073824
|
参考文献 共
52
共3页
|
1.
Lu A H. Magnetic nanoparticles : synthesis, protection, functionalization, and applicationn.
Angewandte Chemie International Editio,2007,46(8):1222-1244
|
CSCD被引
173
次
|
|
|
|
2.
Goldhawk D E. Using the magnetosome to model effective gene-based contrast for magnetic resonance imaging.
Wiley Interdisciplinary Reviews : Nanomedicine and Nanobiotechnology,2012,4(4):378-388
|
CSCD被引
3
次
|
|
|
|
3.
Tang Y. Bacterial magnetic particles as a novel and efficient gene vaccine delivery system.
Gene Therapy,2012,19(12):1187-1195
|
CSCD被引
6
次
|
|
|
|
4.
Jimenez-Lopez C. Magnetite as a prokaryotic biomarker : a review.
Journal of Geophysical Research : Biogeosciences,2010
|
CSCD被引
1
次
|
|
|
|
5.
Matsunaga T. Biotechnological application of nano-scale engineered bacterial magnetic particles.
Journal of Materials Chemistry,2004,14(14):2099-2105
|
CSCD被引
7
次
|
|
|
|
6.
Alphandery E. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy.
ACS Nano,2011,5(8):6279-6296
|
CSCD被引
11
次
|
|
|
|
7.
Arakaki A. Formation of magnetite by bacteria and its application.
Journal of the Royal Society interface,2008,5(26):977-999
|
CSCD被引
11
次
|
|
|
|
8.
Xu A W. Biomimetic mineralization.
Journal of Materials Chemistry,2007,17(5):415-449
|
CSCD被引
26
次
|
|
|
|
9.
Chiu C Y. Biomolecular specificity controlled na-nomaterial synthesis.
Chemical Society Reviews,2013,42(7):2512-2527
|
CSCD被引
6
次
|
|
|
|
10.
Lenders J J. A bioinspired coprecipitation method for the controlled synthesis of magnetite nanoparticles.
Crystal Growth & Design,2014,14(11):5561-5568
|
CSCD被引
5
次
|
|
|
|
11.
Diebel C E. Magnetite defines a vertebrate magnetoreceptor.
Nature,2000,406(6793):299-302
|
CSCD被引
8
次
|
|
|
|
12.
Ueda K. Magnetic remanences in migratory birds.
Journal of the Yamashina Institute for Ornithology,1982,14(2/3):166-170
|
CSCD被引
1
次
|
|
|
|
13.
Yan L. Magnetotactic bacteria, magnetosomes and their application.
Microbiological Research,2012,167(9):507-519
|
CSCD被引
7
次
|
|
|
|
14.
Komeili A. Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria.
FEMS Microbiology Reviews,2012,36(1):232-255
|
CSCD被引
17
次
|
|
|
|
15.
Schiiler D. Genetics and cell biology of magnetosome formation in magnetotactic bacteria.
FEMS Microbiology Reviews,2008,32(4):654-672
|
CSCD被引
17
次
|
|
|
|
16.
Nakamura C. An iron-regulated gene, magA,encoding an iron transport protein of Magnetospirillum sp. strain AMB-1.
Journal of Biological Chemistry,1995,270(47):28392-28396
|
CSCD被引
15
次
|
|
|
|
17.
Uebe R. The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly.
Molecular Microbiology,2011,82(4):818-835
|
CSCD被引
11
次
|
|
|
|
18.
Siponen M I. Magnetochrome : a c-type cytochrome domain specific to magnetotatic bacteria.
Biochemical Society transactions,2012,40(6):1319-1323
|
CSCD被引
5
次
|
|
|
|
19.
Tanaka M. MMS6 protein regulates crystal morphology during nano-sized magnetite biomineralization in vivo.
Journal of Biological Chemistry,2011,286(8):6386-6392
|
CSCD被引
11
次
|
|
|
|
20.
Tanaka M. Identification and functional characterization of liposome tubulation protein from magnetotactic bacteria.
Molecular microbiology,2010,76(2):480-488
|
CSCD被引
7
次
|
|
|
|
|