不同攻角下超声速降落伞伞绳的影响研究
Effects of Suspension Lines on the Supersonic Parachute System at Different Angles of Attack
查看参考文献23篇
文摘
|
文章基于一种简易“浸入边界技术”与流固耦合方法对超声速来流条件下的三维降落伞系统进行了数值模拟。研究中,降落伞系统包括前体和伞体,两者通过伞绳连接。文章的研究目的是分析不同攻角下降落伞伞绳对于降落伞系统周围复杂非定常流场的影响,以及对降落伞性能表现的影响。结果表明:在较小的前体和伞体距离下,由于攻角的影响,非定常流场结构呈现上下不对称,并且上下伞绳激波形成时间不同步。随着攻角的增加,上下面的伞绳激波形成时间出现推迟,并且有变弱的趋势。另外,由于攻角与伞绳的综合影响,伞内表面的时间平均压力分布在5º攻角时最小,而在10º攻角时最大,阻力系数却随着攻角的增加而增加。 |
其他语种文摘
|
In the present study, a three-dimensional parachute system in supersonic flow is numerically simulated using a simple “immersed boundary technique” together with the fluid-structure coupling scheme. The parachute system employed here consists of a capsule and a canopy, where the suspension lines are applied to connect them. The objective of this study is to investigate the effects of suspension lines on the complex unsteady flow structures around the parachute system, and the performance of the supersonic parachute at different angles of attack. As a result, since the distance between the capsule and canopy is rather small, the aerodynamic interactions around the parachute system exhibit more apparent asymmetric flow/shock features when the angle of attack increases, and the suspension line shocks on the upper/lower surfaces are formed at different time. As the angle of attack is increased, the suspension line shocks are postponed to form, and become weaker. In addition, because of the coupling effects of the angle of attack and suspension line shocks, the time-averaged pressure distribution on the canopy inner surface becomes smallest at 5 degree of angle of attack, and reaches to be greatest at 10 degree; however, the drag coefficient increases with the angle of attack increment. |
来源
|
航天返回与遥感
,2017,38(4):47-54 【核心库】
|
DOI
|
10.3969/j.issn.1009-8518.2017.04.006
|
关键词
|
超声速降落伞
;
伞绳
;
攻角
;
数值模拟
;
着陆
|
地址
|
1.
中南大学航空航天学院, 长沙, 410083
2.
香港理工大学深圳研究院, 深圳, 518057
3.
中国科学院力学所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1009-8518 |
学科
|
航天(宇宙航行) |
文献收藏号
|
CSCD:6071760
|
参考文献 共
23
共2页
|
1.
Sengupta A. Results from the Mars Science Laboratory Parachute Decelerator System Supersonic Qualification Program.
Aerospace Conference,2008
|
CSCD被引
1
次
|
|
|
|
2.
Steinberg S Y. Development of the Viking Parachute Configuration by Wind-tunnel Investigation.
Journal of Spacecraft,1974,11:101-107
|
CSCD被引
4
次
|
|
|
|
3.
Maybue R J.
Drag Characteristics of a Disk-gap-band Parachute with a Nominal Diameter of 1.65 Meters at Mach Number from 2.0 to 3.0. NASA Technical Note, NASA TN D-6894,1972
|
CSCD被引
1
次
|
|
|
|
4.
Heinrich H G. Aerodynamics of the Supersonic Guide Surface Parachute.
Journal of Aircraft,1966,3(2):105-111
|
CSCD被引
2
次
|
|
|
|
5.
Moorman C J.
Fluid-structure Interaction Modeling of the Orion Spacecraft Parachutes,2010
|
CSCD被引
1
次
|
|
|
|
6.
Sengupta A. Fluid Structure Interaction of Parachutes in Supersonic Planetary Entry.
21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar,AIAA Paper 2011-2541,2011
|
CSCD被引
1
次
|
|
|
|
7.
Sengupta A. Supersonic Performance of Disk-gap-band Parachutes Constrained to a 0-degree Trim Angle.
Journal of Spacecraft and Rockets,2009,46(6):1155-1163
|
CSCD被引
5
次
|
|
|
|
8.
Sengupta A. Findings from the Supersonic Qualification Program of the Mars Science Laboratory Parachute System.
20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar,AIAA Paper 2009-2900,2009
|
CSCD被引
1
次
|
|
|
|
9.
陈猛. 降落伞充气过程流固耦合方法的数值预测分析.
南京航空航天大学学报,2013,45(4):515-520
|
CSCD被引
5
次
|
|
|
|
10.
薛晓鹏. 超声速降落伞系统的气动干扰数值模拟.
航天返回与遥感,2016,37(3):9-18
|
CSCD被引
4
次
|
|
|
|
11.
Lingard J. Simulation of Mars Supersonic Parachute Performance and Dynamics.
19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar,AIAA Paper 2007-2507,2007
|
CSCD被引
1
次
|
|
|
|
12.
Karagiozis K. A Computational Study of Supersonic Disk-gap-band Parachutes Using Large-eddy Simulation Coupled to a Structural Membrane.
Journal of fluids and Structures,2011,27(2):175-192
|
CSCD被引
11
次
|
|
|
|
13.
Xue X. Numerical Simulation of a Three-dimensional Flexible Parachute System under Supersonic Conditions.
Trans. JSASS Aerospace Tech. Japan,2013,11:99-108
|
CSCD被引
4
次
|
|
|
|
14.
Gao X. Numerical Modeling of Mars Supersonic Disk-gap-band Parachute Inflation.
Advances in Space Research,2016,57(11):2259-2272
|
CSCD被引
10
次
|
|
|
|
15.
Xue X. Effects of Suspension Line on Flow Field Around a Supersonic Parachute.
Aerospace Science and Technology,2015,43:63-77
|
CSCD被引
8
次
|
|
|
|
16.
Xue X. Numerical Investigation of the Effect of Capsule Half-cone Angle on a Supersonic Parachute System.
Journal of Aerospace Engineering,2016,29(4):1-6
|
CSCD被引
4
次
|
|
|
|
17.
Xue X. High-speed Unsteady Flows Past Two-body Configurations.
Chinese Journal of Aeronautics,2017
|
CSCD被引
1
次
|
|
|
|
18.
Xue X. Parametric Study on Aerodynamic Interaction of a Supersonic Parachute System.
AIAA Journal,2015,53(9):2796-2801
|
CSCD被引
7
次
|
|
|
|
19.
Xue X. Numerical Simulation of Supersonic Aerodynamic Interaction of a Parachute System.
Trans. JSASS Aerospace Tech. Japan,2013,11:33-42
|
CSCD被引
3
次
|
|
|
|
20.
Nishiyama Y.
Aerodynamic Characteristics of the Supersonic Parachute with its Opening Process,2013
|
CSCD被引
1
次
|
|
|
|
|