用于空间绿色发动机蓄换热的泡沫镍材料的性能研究
Study on the Performance of Nickel Foam Serving as Thermal Storage & Exchange Material for Space Green Thruster
查看参考文献15篇
文摘
|
针对空间绿色单组元发动机热启动工况,搭建了蓄换热实验装置,研究了泡沫镍的厚度、孔密度、体密度等参数对其与流动介质瞬时换热能力的影响。研究表明,泡沫镍的瞬时换热能力随厚度的增加而增强;在孔密度较小时(20~70PPI),比表面积是影响泡沫镍的瞬时换热能力的关键因素,瞬时换热能力随孔密度和体密度的增加而增强;在孔密度较高时(100PPI),流阻成为影响泡沫镍的瞬时换热能力的主要因素,泡沫镍的瞬时换热能力大幅增强,但随体密度的增加变化不明显。搭建了强制对流条件下泡沫材料流阻实验装置,测量和比较了泡沫镍与催化剂的流阻,发现泡沫镍的流阻随孔密度和体密度的增加而增大,所有泡沫镍的流阻均小于催化剂的流阻。从实际应用角度看,应综合考虑蓄换热实验、点火实验结果和对泡沫金属的力学性能要求等多项因素来选择泡沫金属的参数。 |
其他语种文摘
|
Based on the heating start-up conditions of the space green thruster a self-developed apparatus for thermal storage &exchange was set up.The influence of thickness,pore density and bulk density on the transient heat-exchange capacity(THC)between nickel foams and fluids was studied.The results indicated that THC of nickel foams increased with its thickness.The specific surface area was the key parameter to influence the THC under low pore density(20—70PPI),as THC increased with the pore and bulk density.The flow resistance became the significant parameter under high pore density(100PPI),as THC increase rapidly while it changes little with increase of bulk density.Moreover,a flow resistance apparatus was built up to measure and compare the flow resistance of nickel foams and catalyzer under forced convection.The results indicated that flow resistance increased with the pore and bulk densities.The flow resistance of catalyzer was higher than that of all nickel foams used in this work.Thermal storage &exchange test,igniting test and mechanical property should be taken into overall consideration to determine the appropriate pore and bulk density of the foam in the view of practical application. |
来源
|
材料导报
,2017,31(7B):77-81 【核心库】
|
DOI
|
10.11896/j.issn.1005-023X.2017.014.016
|
关键词
|
空间绿色发动机
;
蓄换热材料
;
瞬时换热
;
流阻
;
孔密度
;
体密度
;
泡沫镍
|
地址
|
1.
中国科学院大学, 北京, 100049
2.
中国科学院金属研究所, 沈阳, 110016
3.
北京控制工程研究所, 北京, 100090
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-023X |
学科
|
航天(宇宙航行) |
文献收藏号
|
CSCD:6058034
|
参考文献 共
15
共1页
|
1.
Jankovsky R. HAN-based monopropellant assessment for spacecraft.
32nd Joint Propulsion Conference,1996:1
|
CSCD被引
1
次
|
|
|
|
2.
Anflo K. High performance green propellant for satellite applications.
45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference &Exhibit,2009:1
|
CSCD被引
1
次
|
|
|
|
3.
陈兴强. 可用于替代肼的2种绿色单组元液体推进剂HAN、ADN.
化学推进剂与高分子材料,2011,9(4):63
|
CSCD被引
8
次
|
|
|
|
4.
Chen Xiaowei. A novel catalyst for hydrazine decomposition:Molybdenum carbide supported onγ-Al_2O_3.
Chem Commun,2002,3(3):288
|
CSCD被引
10
次
|
|
|
|
5.
李诗卓. 空间发动机(推力器)热环境的模拟及铠装热控器件性能实验方法的研究.
第五届空间热物理会议论文集,2000:414
|
CSCD被引
1
次
|
|
|
|
6.
李曙. 小型姿、轨控推力器热控用微型铠装电加热器的研制.
第五届空间热物理会议论文集,2000:420
|
CSCD被引
2
次
|
|
|
|
7.
Banhart J. Manufacture,characterisation and application of cellular metals and metal foams.
Prog Mater Sci,2001,46:559
|
CSCD被引
343
次
|
|
|
|
8.
Lefebvre L P. Porous metals and metallic foams:Current status and recent developments.
Adv Eng Mater,2008,10(9):775
|
CSCD被引
64
次
|
|
|
|
9.
Evans A G. Multifunctionality of cellular metal systems.
Prog Mater Sci,1998,43(3):171
|
CSCD被引
60
次
|
|
|
|
10.
屈治国. 通孔金属泡沫中的空气自然对流传热实验研究.
西安交通大学学报,2009,43(1):1
|
CSCD被引
11
次
|
|
|
|
11.
Zhao Changying. Natural convection in metal foams with open cells.
Int J Heat Mass Transfer,2005,48(12):2452
|
CSCD被引
15
次
|
|
|
|
12.
陆威. 金属泡沫填充水平圆管内单相对流换热研究.
工程热物理学报,2008,29(11):1895
|
CSCD被引
3
次
|
|
|
|
13.
Ding X R. Heat transfer enhancement by using four kinds of porous structures in a heat exchanger.
Appl Mech Mater,2011,52:1632
|
CSCD被引
2
次
|
|
|
|
14.
Lu T J. Heat transfer in open-cell metal foams.
Acta Mater,1998,46(10):3619
|
CSCD被引
37
次
|
|
|
|
15.
段德莉.
肼热分解式空间推力器用特种电热材料研究,2005
|
CSCD被引
1
次
|
|
|
|
|