考虑土壤水分影响的比辐射率方法在地表温度反演中的应用
Application of the emissivity method considering the effects of soil moisture for retrieving land surface temperature
查看参考文献31篇
文摘
|
地表比辐射率是确定地表长波能量平衡的一个关键参数,也是影响地表温度反演的主要因素,因此比辐射率的精确测定具有重要意义。地表比辐射率除了受地表覆盖类型的影响,与土壤水分含量也密切相关。本文针对MODIS通用分裂窗算法和Landsat TM/ETM+单窗算法,根据Mira 等建立的土壤含水量和土壤比辐射率的经验模型,利用SMEX04试验中Arizona 研究区的遥感数据和地面观测数据,探讨考虑土壤水分影响后的比辐射率信息在地表温度反演中是否能够提高其反演精度。研究结果表明:利用考虑土壤水分影响后的比辐射率所反演的地表温度平均误差(ME)和均方根误差(RMSE)均低于比辐射率未考虑土壤水分影响反演的地表温度,其中通用分裂窗算法反演的地表温度ME降低了1.0~1.5K,RMSE降低了0.4~0.8K;单窗算法反演的地表温度ME降低了0.7K, RMSE降低了0.9K。因此,基于土壤比辐射率与土壤水分关系模型的比辐射率修正方法能够提高地表温度的反演精度,并且敏感性分析的结果表明目前土壤水分遥感数据0.04cm~3/cm~3的误差对本文使用的考虑土壤水分获取地表比辐射率进而反演地表温度的方法影响不明显。 |
其他语种文摘
|
The emissivity of natural surfaces is a major parameter determining land surface temperature(LST). In addition,the surface cover type influences emissivity and soil moisture is closely related to emissivity. Here,methods for obtaining the emissivity of bare soil using the MODIS generalized split-window algorithm and Landsat mono-window algorithm were improved. According to the empirical logarithm linear formula between soil moisture and soil emissivity, based on remote sensing data and ground observation data from the Soil Moisture Experiment 2004 (SMEX04)- Arizona study area,we discuss if the accuracy of land surface temperature retrieval can be improved when surface emissivity acquisition methods consider effects of soil moisture. We found that the accuracy of both improved algorithms considering soil moisture effects were better than algorithms not considering soil moisture effects. The mean error of LST retrieved by the improved MODIS generalized split-window algorithm reduced 1.0~1.5K,and the root mean square error reduced by 0.4~0.8K. Moreover,the mean error of LST retrieved by the improved Landsat mono-window algorithm reduced by 0.7K,and the root mean square error reduced by 0.9K. As a whole,the accuracy of land surface temperature retrieval can be improved when surface emissivity acquisition methods consider the effects of soil moisture,especially areas where vegetation coverage is less. Sensitivity analysis results show that the influence of remote sensing soil moisture data with a 0.04cm~3/cm~3 error on LST retrieval algorithms considering soil moisture effects is not obvious. |
来源
|
资源科学
,2017,39(8):1592-1604 【核心库】
|
DOI
|
10.18402/resci.2017.08.15
|
关键词
|
MODIS通用分裂窗算法
;
Landsat TM/ETM+单窗算法
;
比辐射率
;
SMEX04
;
地表温度
;
土壤水分
|
地址
|
1.
中国科学院地理科学与资源研究所, 中国科学院陆地水循环及地表过程重点实验室, 北京, 100101
2.
中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-7588 |
学科
|
大气科学(气象学) |
基金
|
国家自然科学基金面上项目
|
文献收藏号
|
CSCD:6057133
|
参考文献 共
31
共2页
|
1.
江东. 地面温度的遥感反演:理论、推导及应用.
甘肃科学学报,2001,13(4):36-40
|
CSCD被引
8
次
|
|
|
|
2.
甘甫平. 热红外遥感反演陆地表面温度研究进展.
国土资源遥感,2006(1):6-11
|
CSCD被引
33
次
|
|
|
|
3.
李琴. 干旱/半干旱区MODIS地表温度反演与验证研究.
遥感技术与应用,2008,23(6):643-647
|
CSCD被引
11
次
|
|
|
|
4.
Snyder W C. Classification-based emissivity for land surface temperature measurement from space.
International Journal of Remote Sensing,1998,19(14):2753-2774
|
CSCD被引
34
次
|
|
|
|
5.
Li Z L. A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data.
Science in China Series E: Technological Sciences,2000,43(1):23-33
|
CSCD被引
6
次
|
|
|
|
6.
Peres L F. Land surface temperature and emissivity estimation based on the two-temperature method:Sensitivity analysis using simulated MSG/SEVIRI data.
Remote Sensing of Environment,2004,91(3/4):377-389
|
CSCD被引
5
次
|
|
|
|
7.
Jiang G M. Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSGSEVIRI.
Remote Sensing of Environment,2006,105(4):326-340
|
CSCD被引
15
次
|
|
|
|
8.
Peres L F. Synergistic use of the two-temperature and split-window methods for land-surface temperature retrieval.
International Journal of Remote Sensing,2010,31(16):4387-4409
|
CSCD被引
1
次
|
|
|
|
9.
Wang N. Temperature and emissivity retrievals from hyperspectral thermal infrared data using linear spectral emissivity constraint.
IEEE Transactions on Geoscience and Remote Sensing,2011,49(4):1291-1303
|
CSCD被引
15
次
|
|
|
|
10.
Van De Griend A A. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces.
International Journal of Remote Sensing,1993,14(6):1119-1131
|
CSCD被引
128
次
|
|
|
|
11.
Sobrino J A. A comparative study of land surface emissivity retrieval from NOAA data.
Remote Sensing of Environment,2001,75(2):256-266
|
CSCD被引
65
次
|
|
|
|
12.
田静. 土壤水分及粗糙度对比辐射率的影响.
遥感学报,2016,20(4):561-569
|
CSCD被引
1
次
|
|
|
|
13.
肖青. 热红外发射率光谱的野外测量方法与土壤热红外发射率特性研究.
红外与毫米波学报,2003,22(5):373-378
|
CSCD被引
31
次
|
|
|
|
14.
Xu L. Retrieval of soil water content in saline soils from emitted thermal infrared spectra using partial linear squares regression.
Remote Sensing,2015,7(11):14646-14662
|
CSCD被引
3
次
|
|
|
|
15.
Mira M. Soil moisture effect on thermal infrared(8-13-μm)emissivity.
IEEE Transactions on Geoscience & Remote Sensing,2010,48(5):2251-2260
|
CSCD被引
6
次
|
|
|
|
16.
Sanchez J M. Thermal infrared emissivity dependence on soil moisture in field conditions.
IEEE Transactions on Geoscience & Remote Sensing,2011,49(11):4652-4659
|
CSCD被引
2
次
|
|
|
|
17.
Wang H S. Investigating the impact of soil moisture on thermal infrared emissivity using ASTER data.
Geoscience&Remote Sensing Letters IEEE,2015,12(2):294-298
|
CSCD被引
4
次
|
|
|
|
18.
Qin Z H. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region.
International Journal of Remote Sensing,2001,22(18):3719-3746
|
CSCD被引
106
次
|
|
|
|
19.
Wan Z M. A generalized split-window algorithm for retrieving land-surface temperature from space.
IEEE Transactions on Geoscience & Remote Sensing,1996,34(4):892-905
|
CSCD被引
101
次
|
|
|
|
20.
覃志豪. 陆地卫星TM6波段范围内地表比辐射率的估计.
国土资源遥感,2004,16(3):28-32
|
CSCD被引
266
次
|
|
|
|
|