碳纳米管与石墨烯协同改性天然石墨及其电化学性能
Combination Carbon Nanotubes with Graphene Modified Natural Graphite and Its Electrochemical Performance
查看参考文献22篇
文摘
|
以碳纳米管和氧化石墨烯为原料,二者按5∶3混合超声分散再高温还原制备碳纳米管/石墨烯/天然石墨(CNTs/ rGO/NG)锂离子复合负极材料。采用扫描电镜(SEM)、X射线衍射(XRD)、红外光谱(FTIR)和电化学测试等分析技术对复合材料的形貌、结构、电化学进行表征。结果表明:石墨烯和碳纳米管在天然石墨表面形成三维立体网络结构。与纯天然石墨相比,CNTs/rGO/NG复合材料具有良好的倍率性能和循环寿命,在0.1C时首次放电比容量为479mAh/g,可逆容量达473mAh/g,循环100次后容量为439.5mAh/g,容量保持率为92%,在0.5,1,5C不同电流倍率时容量依次为457,433,394mAh/g。 |
其他语种文摘
|
The CNTs/rGO/NG composite lithiumion battery anode material was synthesized by thermal reducing,using graphene oxide(GO)and carbon nanotubes(CNTs)as precursors for a 5∶3proportion. The morphology,structure,and electrochemical performance of the composite were characterized by scanning electron microscopy(SEM),X-ray diffractometry(XRD),Fourier transform infrared spectra(FTIR)and electrochemical measurements.The results show that reduced graphene oxide and carbon nanotubes form a perfect three-dimensional network structure on the surface of natural graphite.CNTs/rGO/NG composite has good rate performance and cycle life,compared with pure natural graphite.The initial discharge capacity of designed anode is 479mAh/g at 0.1C,the reversible capacity up to 473mAh/g after 100cycles,the capacity is still 439.5mAh/g,the capacity retention rate is 92%,and the capacity is 457,433,394mAh/g at 0.5,1,5C,respectively. |
来源
|
材料工程
,2017,45(4):121-127 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2016.001044
|
关键词
|
碳纳米管
;
氧化石墨烯
;
负极材料
;
电化学性能
;
三维网络结构
|
地址
|
中南林业科技大学材料科学与工程学院, 长沙, 410004
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
电工技术 |
基金
|
国家自然科学基金重点资助项目
;
湖南省自然科学基金重点项目
|
文献收藏号
|
CSCD:6048792
|
参考文献 共
22
共2页
|
1.
Iijima S. Helical microtubules of graphitic carbon.
Nature,1991,354(6348):56-58
|
CSCD被引
3413
次
|
|
|
|
2.
Geim A K. The rise of graphene.
Nature Materials,2007,6(3):183-191
|
CSCD被引
2329
次
|
|
|
|
3.
Mittal G. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites.
Journal of Industrial and Engineering Chemistry,2015,21:11-25
|
CSCD被引
32
次
|
|
|
|
4.
Kholmanov I N. Optical, electrical,and electromechanical properties of hybrid graphene/carbon nanotube films.
Advanced Materials,2015,27(19):3053-3059
|
CSCD被引
8
次
|
|
|
|
5.
刘强. 多壁碳纳米管增强铝基复合材料的高温力学性能.
材料工程,2016,44(4):20-25
|
CSCD被引
2
次
|
|
|
|
6.
Fang T H. Mechanical characteristics of graphene nanoribbons encapsulated in single-walled carbon nanotubes using molecular dynamics simulations.
Applied Surface Science,2015,356:221-225
|
CSCD被引
1
次
|
|
|
|
7.
Fang S. Ge-graphene-carbon nanotube composite anode for high performance lithium-ion batteries.
Journal of Materials Chemistry A,2015,3(4):1498-1503
|
CSCD被引
6
次
|
|
|
|
8.
Ye M. Graphene-winged carbon nanotubes as high-performance lithium-ion batteries anode with super-long cycle life.
Journal of Power Sources,2016,305:106-114
|
CSCD被引
5
次
|
|
|
|
9.
Cui X. Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor.
Electrochimica Acta,2015,169:342-350
|
CSCD被引
6
次
|
|
|
|
10.
周晓. 石墨烯负载新型π-共轭聚合物纳米复合电极材料的合成及其超级电容特性.
物理化学学报,2016,32(4):975-982
|
CSCD被引
6
次
|
|
|
|
11.
Xin G. Preparation of self-supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for supercapacitor.
Electrochimica Acta,2015,167:254-261
|
CSCD被引
4
次
|
|
|
|
12.
Govindhan M. Electrochemical sensor based on carbon nanotubes for the simultaneous detection of phenolic pollutants.
Electroanalysis,2015,27(4):902-909
|
CSCD被引
2
次
|
|
|
|
13.
Li S. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells.
Advanced Energy Materials,2011,1(4):486-490
|
CSCD被引
19
次
|
|
|
|
14.
Lei W. Carbon nanotubes and graphene for flexible electrochemical energy storage:from materials to devices.
Advanced Materials,2016,28(22):218
|
CSCD被引
75
次
|
|
|
|
15.
Zhu C. Fast Li storage in MoS2-graphene-carbon nanotube nanocomposites:advantageous functional integration of 0D,1D,and 2Dnanostructures.
Advanced Energy Materials,2015,5(4)
|
CSCD被引
1
次
|
|
|
|
16.
Vinayan B P. Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application.
Journal of Materials Chemistry,2012,22(19):9949-9956
|
CSCD被引
12
次
|
|
|
|
17.
Huang Z D. Binder-free graphene/carbon nanotube/silicon hybrid grid as freestanding anode for high capacity lithium ion batteries.
Composites Part A: Applied Science and Manufacturing,2016,84:386-392
|
CSCD被引
1
次
|
|
|
|
18.
Zhang J. High-capacity graphene oxide/graphite/carbon nanotube composites for use in Li-ion battery anodes.
Carbon,2014,74:153-162
|
CSCD被引
3
次
|
|
|
|
19.
邓凌峰. 碳纳米管/天然石墨复合负极材料的制备与表征.
人工晶体学报,2016,45(4):1041-1046
|
CSCD被引
3
次
|
|
|
|
20.
刘晓峰. 3D α-Fe_2O_3 /掺氮石墨烯/碳纳米管复合材料及其储锂性能.
无机化学学报,2014,30(2):242-250
|
CSCD被引
7
次
|
|
|
|
|