基于方向A~*算法的温室机器人实时路径规划
Real-time Path Planning of Greenhouse Robot Based on Directional A~* Algorithm
查看参考文献17篇
文摘
|
针对复杂环境下的温室机器人路径规划问题,重点研究了生成路径的平滑设计、碰撞检测和算法实时性,提出一种方向A~*算法。首先采用"视野线"平滑原则优化路径,消除锯齿效应并避免部分碰撞;其次应用"圆弧-直线-圆弧"转弯策略,避免机器人本体宽度影响;最后基于二叉堆加速算法,提升算法计算效率。仿真实验结果表明,方向A~*算法满足平滑要求且能有效避免碰撞,加速算法平均提速4~7倍。同时,机器人在真实实验环境下能实现安全自主导航,跟踪误差小于0.15 m,验证了所提方法的可行性。 |
其他语种文摘
|
Because of the existing problems in path planning of greenhouse robot under complex environment, a directional A~* algorithm was proposed. This method was focused on the smooth design, collision detection and the algorithm efficiency. Firstly, the "line of sight" solutions were used to smooth the path for getting rid of the zigzag effect and collisions. Secondly, the "arc-line-arc" turning methods were applied to avoid the width of the greenhouse robot in path finding. At last, some basic optimizations based on the binary heap were carried out to speed up the directional A~* algorithm. Simulation and comparison results between the improved A~* algorithm and traditional one showed that the proposed method was more efficient. It can not only meet the requirements of smooth, but also predict collision after proceeding with turning strategy. At the same time, the accelerating algorithm based on the binary heap made the path finding 4~7 times faster. Moreover, a path planning and tracking test was carried out in laboratory environment, where a simulation greenhouse was built. The results verified that the tracking precision can keep in a small range and the greenhouse robot can run without collision when the navigation path was given by the proposed algorithm, which proved the effectiveness and feasibility of the directional A~* algorithm. |
来源
|
农业机械学报
,2017,48(7):22-28 【核心库】
|
DOI
|
10.6041/j.issn.1000-1298.2017.07.003
|
关键词
|
温室机器人
;
路径规划
;
方向A~*算法
;
二叉堆
|
地址
|
中国科学院合肥物质科学研究院应用技术研究所, 合肥, 230031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1298 |
学科
|
自动化技术、计算机技术 |
基金
|
国家“十二五”科技支撑计划项目
;
安徽省科技重大专项计划项目
;
安徽省创新型省份建设专项资金项目
|
文献收藏号
|
CSCD:6033108
|
参考文献 共
17
共1页
|
1.
Zhou Zhiping. Enhanced ant colony optimization algorithm for global path planning of mobile robots.
2013 5th International Conference on Computational and Information Sciences,2013:698-701
|
CSCD被引
2
次
|
|
|
|
2.
陆新华. 室内服务机器人导航方法研究.
机器人,2003,25(1):80-87
|
CSCD被引
12
次
|
|
|
|
3.
Zamirian M. A novel algorithm for solving optimal path planning problems based on parametr-ization method and fuzzy aggregation.
Physics Letters A,2009,373(38):34-39
|
CSCD被引
4
次
|
|
|
|
4.
张建英. 基于人工势场法的机器人路径规划.
哈尔滨工业大学学报,2006,38(8):1306-1309
|
CSCD被引
36
次
|
|
|
|
5.
祝继华. 基于图像配准的栅格地图拼接方法.
自动化学报,2015,41(2):285-294
|
CSCD被引
13
次
|
|
|
|
6.
Stentz A. Optimal and efficient path planning for partially-known environments.
Proceedings of the IEEE International Conference on Robotics and Automation,1994:3310-3317
|
CSCD被引
40
次
|
|
|
|
7.
Hu Yanrong. A knowledge based genetic algorithm for path planning of a mobile robot.
Proceedings of the 2004, IEEE international Conference on Robotics & Automation,2004:4350-4355
|
CSCD被引
1
次
|
|
|
|
8.
Mohd M. Ant colony robot motion planning.
Eurocon 2005,2005:213-216
|
CSCD被引
1
次
|
|
|
|
9.
王红卫. 基于平滑A*算法的移动机器人路径规划.
同济大学学报:自然科学版,2010,38(11):1647-1650,1655
|
CSCD被引
33
次
|
|
|
|
10.
单伟. 基于改进A~*算法的平滑路径设计.
东南大学学报:自然科学版,2010,40(增刊1):155-161
|
CSCD被引
5
次
|
|
|
|
11.
Boissonnat J D. Shortest paths of bounded curvature in the plane.
Proceedings of the IEEE International Conference on Robotics and Automation,1992:2315-2320
|
CSCD被引
5
次
|
|
|
|
12.
Trocato K I. Differential A~*.
IEEE Transactions on Knowledge and Data Engineering,2002,14(6):1218-1229
|
CSCD被引
10
次
|
|
|
|
13.
王殿君. 基于改进A*算法的室内移动机器人路径规划.
清华大学学报:自然科学版,2012,52(8):1085-1089
|
CSCD被引
62
次
|
|
|
|
14.
周文卷.
复杂环境下自主移动机器人路径规划方法的研究,2014
|
CSCD被引
3
次
|
|
|
|
15.
Giuseppee C. A network flow based heuristic approach for optimising AGV.
Journal of Intelligent Manufacturing,2013,24(2):405-419
|
CSCD被引
1
次
|
|
|
|
16.
马飞. 基于改进A~*算法的地下无人铲运机导航路径规划.
农业机械学报,2015,46(7):303-309
|
CSCD被引
8
次
|
|
|
|
17.
杨泳. 路径诱导系统中双向启发式A*算法研究.
计算机工程与应用,2014,50(16):54-56,71
|
CSCD被引
3
次
|
|
|
|
|