三亚热带雨林环境植被和地表能量空间分布特征
Spatial Distribution of Land Surface Vegetation-Energy Relationship in Sanya Tropical Rain Forest Regions
查看参考文献27篇
文摘
|
遥感地表能量信息通过空间分布及变化趋势体现生态系统要素的格局、状态、质量,客观反映城市生态系统的状态,是度量区域生态系统要素生态过程的重要内容。本文以三亚市热带雨林植被环境的地表能量综合响应特征和作用、影响关系特征为基础,采用植被指数分级、地表能量分级和植被-能量关系等指标,结合雨林垂直分带和植被分布信息,探讨近30年(1987-2016年)不同时期热带雨林环境的水平地带性、垂直地带性及其时空变化特征。结果表明:①近30年三亚市域植被覆盖比例维持在90%左右,植被指数分级构成以高、中数值分布为主,并呈现整体趋高态势。②各级地表能量分布比例的波动幅度在10%之内,中等地表能量级别范围呈现向低地表能量区域扩展趋势。③随着海拔高度的提升,植被指数高数值的热带雨林分布比例增加,地表能量值降低。④热带雨林的地表能量和植被指数的时空分布稳定性均高于人工植被。本文基于遥感地表能量综合响应特征和作用、影响关系特征建立的指标评价体系,可以为热带雨林生态系统的量化评价提供支持。 |
其他语种文摘
|
Land surface energy information of remote sensing describes the ecological process of regional ecosystem elements. The distribution and variation trends of land surface energy reflect structure and quality of regional ecosystem element. This study is based on the theory of ecology and aims to provide a scientific basis of preservation and restoration of forests in decision-making, prediction, implementation, verification and other aspects. In this study, we extracted the information about the comprehensive responses and interactive relationship between tropical rain forest and land surface energy in Sanya, using classes of vegetation greenness, land surface energy and the vegetation-energy relationship index to evaluate the quality of forest ecosystem. Vertical and horizontal distributions of tropical rain forest of 30 years (1987-2016)were used to discuss a change of spatial-temporal zonality. The following results are noted: (1)With around 90% of vegetation coverage in the past 30 years, classes of vegetation greenness are mainly composed of high and medium values, and has an increasing trend. (2)The low vegetation greenness and high land surface energy shifts to high vegetation greenness and low land surface energy from coastal area to mountain area. (3)The fluctuation of land surface energy distribution at all levels was less than 10%. Regions with medium energy expanded to low energy areas. (4)Tropical rain forest of high vegetation greenness increases with elevation increasing associated with land surface energy decreasing. (5)The ecological quality of the planted vegetation regions below 200 meters height, declined faster than that of planted vegetation regions above 400 meters height. Compared with planted vegetation regions, tropical rain forest regions have high spatial-temporally stability in both surface energy and vegetation greenness. In general, comprehensive response characteristics of remote sensing and their interactive relationship provide quantitative basis for evaluating the tropical rain forest ecosystems. |
来源
|
地球信息科学学报
,2017,19(7):950-961 【核心库】
|
DOI
|
10.3724/SP.J.1047.2017.00950
|
关键词
|
热带雨林
;
遥感
;
植被指数
;
地表能量
;
生态系统
|
地址
|
中国科学院遥感与数字地球研究所, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
林业 |
基金
|
三亚市生态修复城市修补总体规划遥感生态专题研究
|
文献收藏号
|
CSCD:6031901
|
参考文献 共
27
共2页
|
1.
Bermingham E.
Tropical rainforests: past, present, and future,2005
|
CSCD被引
1
次
|
|
|
|
2.
Barlow J. Tropical rain forests: An ecological and biogeographical comparison by richard primack and richard corlett.
Geographical Journal,2006,172(1):711-712
|
CSCD被引
1
次
|
|
|
|
3.
Laurance W F. Forest destruction in tropical asia.
Current Science,2007,93(11):1544-1550
|
CSCD被引
6
次
|
|
|
|
4.
Wright S J. The future of tropical forest species.
Biotropica,2006,38(3):287-301
|
CSCD被引
5
次
|
|
|
|
5.
Nichol J E. An examination of tropical rain-forest microclimate using gis modeling.
Global Ecology and Biogeography Letters,1994,4(3):69-78
|
CSCD被引
1
次
|
|
|
|
6.
Ibanez R. An ecosystem report on the panama canal: Monitoring the status of the forest communities and the watershed.
Environmental Monitoring and Assessment,2002,80(1):65-95
|
CSCD被引
2
次
|
|
|
|
7.
颜家安.
海南岛生态环境变迁史研究,2006
|
CSCD被引
3
次
|
|
|
|
8.
苏金明. 海南三亚生态问题及其生态保护路径研究.
规划师,2014(5):108-113
|
CSCD被引
1
次
|
|
|
|
9.
陈朝辉. 海南省三亚市的生态环境建设.
热带地理,2001(3):202-206
|
CSCD被引
3
次
|
|
|
|
10.
Zhang J Q. Mapping and evaluation of landscape ecological status using geographic indices extracted from remote sensing imagery of the pearl river delta, china, between 1998 and 2008.
Environmental Earth Sciences,2016,75(4):16
|
CSCD被引
1
次
|
|
|
|
11.
Zhang C. Evaluation of urbanized ecological environment quality: A case study on Chaoyang district in Beijing.
Environmental Engineering and Management Journal,2013,12(9):1779-1784
|
CSCD被引
1
次
|
|
|
|
12.
关燕宁. 基于遥感信息的城市地表能量空间分布及特征研究--以国际宜居城市为例.
地球信息科学学报,2014,16(5):806-814
|
CSCD被引
3
次
|
|
|
|
13.
王蕾. 城市地表要素的地表能量响应特征及其关系研究.
地球信息科学学报,2016,18(12):1684-1697
|
CSCD被引
6
次
|
|
|
|
14.
Ochoa-Gaona S. A multi-criterion index for the evaluation of local tropical forest conditions in mexico.
Forest Ecology and Management,2010,260(5):618-627
|
CSCD被引
33
次
|
|
|
|
15.
徐丽.
森林类自然保护区生态质量评价研究,2014
|
CSCD被引
1
次
|
|
|
|
16.
Keddy P A. Ecological properties for the evaluation, management, and restoration of temperate deciduous forest ecosystems.
Ecological Applications,1996,6(3):748-762
|
CSCD被引
5
次
|
|
|
|
17.
吴志丰. 呼中林区森林景观的历史变域模拟及评价.
生态学报,2013(15):4799-4807
|
CSCD被引
7
次
|
|
|
|
18.
中国科学院《中国自然地理》委员会.
中国自然地理:地貌,1980
|
CSCD被引
1
次
|
|
|
|
19.
黄海智. 三亚市旅游气候舒适度评价.
气象研究与应用,2010,31(4):70-73
|
CSCD被引
4
次
|
|
|
|
20.
Cai D. Climate and vegetation: An era-interim and GIMMS NDVI analysis.
Journal of Climate,2014,27(13):5111-5118
|
CSCD被引
3
次
|
|
|
|
|