基于MODIS数据的新疆地表蒸散量时空分布及变化趋势分析
Spatio-temporal distribution and evolution trend of evapotranspiration in Xinjiang based on MOD16 data
查看参考文献46篇
文摘
|
结合MOD16蒸散产品和气象站实测数据,分析2000-2014年新疆地表ET与PET的时空分布特征及其变化趋势,进一步揭示ET与PET之间的关系。结果表明:① MOD16-ET产品在新疆地区的精度(R~2=0.83)总体上满足要求,可用于地表ET的时空分布特征研究;②新疆多年平均ET与PET分别为364.29 mm和1584.06 mm;年内分布处于先增大后减少的单峰型变化趋势,夏季ET与PET差距最大,此时研究区最干旱、缺水;③新疆年平均ET与年平均PET的空间分布体现出北疆大于南疆、西部大于东部的分布特征,但年平均ET与年平均PET的空间分布状况正好相反。阿尔泰山一带、伊犁河谷西部以及天山西段水分充足,准噶尔盆地南部和北部、东疆、南疆塔里木盆地外缘干旱缺水;④ 2000-2014年,新疆ET总体上处于减少趋势,PET处于增加趋势,说明新疆近15年内干旱加重。 |
其他语种文摘
|
Evapotranspiration (ET)plays an important role in the hydrological process as it is a major part in the ecological water balance. The surface ET can substantially influence on a regional scale the amount and spatial distribution of water resources. In arid lands like Xinjiang Uygur Autonomous Region located in Northwest China, ET is the main loss variable in water budget. It varies with land surface and local meteorological conditions. Quantitative estimation of spatio- temporal distribution and evolution of surface ET is essential for understanding the hydrological cycle and water resources management. Based on the measured data from MOD16 evapotranspiration product and meteorological stations, the spatio- temporal distribution and the evolution trend of land surface ET and potential evapotranspiration (PET)in Xinjiang during 2000-2014 were analyzed to further reveal the relationship between ET and PET. Results showed that: (1)the accuracy of the MOD16- ET (R~2=0.83)in Xinjiang can meet the requirements, and can be used to examine the spatio- temporal distribution of surface ET; (2)the mean annual ET and PET were 364.29 mm and 1584.06 mm, respectively; the annual distribution was a unimodal pattern with an increase first then a decrease, the difference between ET and PET was the largest in summer, when there was a water shortage in the study area; (3)the mean ET and PET in northern Xinjiang are bigger than in southern Xinjiang, and that they are bigger in the west than in the east. The spatial distribution of PET was opposite to that of ET. The Altai Mountains, west shore of the Ili River Valley and western Tianshan Mountains had sufficient water supply, while the north and south of the Junggar Basin, the outer margin of eastern and western Xinjiang suffered from drought and water shortage; (4)during 2000-2014, ET was in a decreasing trend, and PET was in an increasing trend, which suggested that the drought was aggravated in Xinjiang in the past 15 years. |
来源
|
地理研究
,2017,36(7):1245-1256 【核心库】
|
DOI
|
10.11821/dlyj201707005
|
关键词
|
MOD16产品
;
地表ET、PET
;
时空分布
;
变化趋势
;
新疆
|
地址
|
新疆师范大学地理科学与旅游学院,流域信息集成与生态安全实验室, 新疆干旱区湖泊环境与资源重点实验室, 乌鲁木齐, 830054
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0585 |
学科
|
大气科学(气象学) |
基金
|
新疆研究生科研创新项目
;
新疆维吾尔自治区青年科技创新人才培养工程项目
;
国家自然科学基金项目
;
新疆维吾尔自治区重点实验室专项资金资助项目
|
文献收藏号
|
CSCD:6029368
|
参考文献 共
46
共3页
|
1.
杨东. 甘南州近35年蒸发量时空演变特征及对环境的影响.
干旱区资源与环境,2011,25(6):147-153
|
CSCD被引
2
次
|
|
|
|
2.
丛振涛.
蒸发原理与应用,2013
|
CSCD被引
10
次
|
|
|
|
3.
Chahine M T. The hydrological cycle and its influence on climate.
Nature,1996,359(6349):373-380
|
CSCD被引
127
次
|
|
|
|
4.
庞忠和. 新疆水循环变化机理与水资源调蓄.
第四纪研究,2014,34(5):907-917
|
CSCD被引
17
次
|
|
|
|
5.
周彦昭. 利用SEBAL和改进的SEBAL模型估算黑河中游戈壁、绿洲的蒸散发.
冰川冻土,2014,36(6):1526-1537
|
CSCD被引
24
次
|
|
|
|
6.
邱新法. 陆面实际蒸散研究.
地理科学进展,2003,22(2):118-124
|
CSCD被引
14
次
|
|
|
|
7.
张晓涛. 估算区域蒸发蒸腾量的遥感模型对比分析.
农业工程学报,2006,22(7):6-13
|
CSCD被引
23
次
|
|
|
|
8.
张长春. 区域蒸发量的遥感研究现状及发展趋势.
水土保持学报,2004,18(2):174-177
|
CSCD被引
9
次
|
|
|
|
9.
宋鑫博.
基于MODIS数据的湖西区地表蒸散发遥感估算.硕士学位论文,2013
|
CSCD被引
1
次
|
|
|
|
10.
张仁华. 定量遥感反演作物蒸腾和土壤水分利用率的区域分异.
中国科学. D辑, 地球科学,2001,31(11):959-968
|
CSCD被引
28
次
|
|
|
|
11.
高彦春. 遥感蒸散发模型研究进展.
遥感学报,2008,12(3):515-528
|
CSCD被引
52
次
|
|
|
|
12.
Moran M S. Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland.
Agricultural and Forest Meteorology,1996,80(2/4):87-109
|
CSCD被引
24
次
|
|
|
|
13.
Jiang L. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations.
Geophysical Research Latters,1999,26(17):2773-2776
|
CSCD被引
46
次
|
|
|
|
14.
Bastiaanssen W. A remote sensing surface energy balance algorithm for land.
Journal of hydrology,1998,212/213(1/4):198-212
|
CSCD被引
207
次
|
|
|
|
15.
Su Z. Two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere.
Journal of Applied Meteorology,2001,40(11):1933-1951
|
CSCD被引
29
次
|
|
|
|
16.
Kustas W P. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover.
Agricultural and Forest Meteorology,1999,94(1):13-29
|
CSCD被引
30
次
|
|
|
|
17.
刘园. 华北平原参考作物蒸散量变化特征及气候影响因素.
生态学报,2010,30(4):923-932
|
CSCD被引
62
次
|
|
|
|
18.
李宝富. 基于遥感和SEBAL模型的塔里木河干流区蒸散发估算.
地理学报,2011,66(9):1230-1238
|
CSCD被引
44
次
|
|
|
|
19.
吴雪娇. 基于涡动相关仪验证的SEBS模型对黑河中游地表蒸散发的估算研究.
冰川冻土,2014,36(6):1538-1547
|
CSCD被引
14
次
|
|
|
|
20.
Mu Q Z. Improvements to a MODIS global terrestrial evapotranspiration algorithm.
Remote Sensing of Environment,2011,115(8):1781-1800
|
CSCD被引
110
次
|
|
|
|
|