基于流量监测的西藏东南部然乌湖水量平衡季节变化及其补给过程分析
Seasonal variations of water balance and supply process based upon discharge monitoring in Ranwu Lake of Southeast Tibet
查看参考文献35篇
文摘
|
青藏高原分布着亚洲大陆最大的湖泊群,其湖泊变化对气候变化响应敏感。基于遥感数据的湖泊面积变化不足以反映外流湖对气候变化的响应,需借助湖泊水量平衡过程分析来进一步研究各补给要素的变化。本文利用2015年4月-11月然乌湖水文气象监测数据,通过建立流量—水位关系,依据连续的水位数据重建了观测期内然乌湖主要径流的水文过程线,并结合SRM模型分析了然乌湖的水量平衡过程及季节变化。结果表明,观测期内然乌湖入湖水量约为18.49×10~8 m~3,其中冰川融水约为10.06×10~8 m~3,冰川融水占然乌湖补给的54%以上,湖面降水、湖面蒸发对湖泊水量平衡过程影响微弱。流域降水对湖泊的补给具有明显的季节特征。春季受西风南支扰动影响,然乌湖地区降水量大,降水是春季然乌湖的主要补给源。夏季和早秋由于气温升高,冰川消融量大,冰川融水是湖泊补给的主控因素。在未来气候变暖的条件下,冰川融水将会在湖泊补给中占据更大比例,并可能使得流域内的冰湖水量增加,产生潜在灾害风险。 |
其他语种文摘
|
The Tibetan Plateau boasts the greatest lake group in the Asian continent, where the lakes respond sensitively to climate change. For the exorheic lakes, the area changes based on remote sensing data are insufficient to reflect their responses to climatic changes. Water balance analyses of these lakes are needed for understanding the hydrological processes of lake basins and their relationships with climate changes. In this paper, we use the hydrological and meteorological monitoring data in the Ranwu Lake Basin from April to November in 2015 to examine the relationship between water level and runoff and reconstruct flux process line according to continuous water level data. Together with the snowmelt runoff model (SRM)simulation, we analyze the water balance process and its seasonal changes of the Ranwu Lake. The result shows that the total water yield inputted into the lake during the monitoring period is about 18.49×10~8 m~3, and that the glacial melt water is about 10.06 ×10~8 m~3, accounting for more than 54% of the lakes' supplies. Precipitation and evaporation of lake water surface and the lake water storage change have only slight effects on the process of lake water balance. Replenishment of the lake water is clearly seasonal as it depends on rainfall. Under the influence of southern branch of Westerlies, the Ranwu Lake area witnesses high precipitation, which is the main supply source in spring. Due to temperature rise in dummer and early autumn, a large amount of glacial melt water is a dominant factor of the water balance of this lake. With the temperature rise in the future, glacial melt water will occupy higher proportions in the total supplies of the lakes in this area. It will conduce to the speedy rise of the glacial lake level and lead to potential hazard risks. |
来源
|
地理学报
,2017,72(7):1221-1234 【核心库】
|
DOI
|
10.11821/dlxb201707008
|
关键词
|
藏东南
;
然乌湖
;
SRM模型
;
水量平衡
;
季节变化
;
冰川融水
|
地址
|
1.
中国科学院青藏高原研究所, 中国科学院青藏高原环境变化与地表过程重点实验室;;中国科学院青藏高原地球科学卓越创新中心, 北京, 100101
2.
中国科学院青藏高原研究所, 中国科学院青藏高原环境变化与地表过程重点实验室, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
地球物理学 |
基金
|
国家自然科学基金项目
;
科技基础性科技工作专项项目
|
文献收藏号
|
CSCD:6029162
|
参考文献 共
35
共2页
|
1.
Immerzeel W W. Climate change will affect the Asian Water Towers.
Science,2010,328(5984):1382-1385
|
CSCD被引
395
次
|
|
|
|
2.
Zhang G Q. Lakes' state and abundance across the Tibetan Plateau.
Chinese Science Bulletin,2014,59(24):3010-3021
|
CSCD被引
26
次
|
|
|
|
3.
Zhu L P. Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co Basin of the Tibetan Plateau.
Chinese Science Bulletin,2010,55(13):1294-1303
|
CSCD被引
40
次
|
|
|
|
4.
Singh P. Impact of warmer climate on melt and evaporation for the rainfed, snowfed and glacierfed basins in the Himalayan region.
Journal of Hydrology,2005,300(1/4):140-154
|
CSCD被引
11
次
|
|
|
|
5.
傅丽昕. 塔里木河源流区近50 a径流量与气候变化关系研究.
中国沙漠,2010,30(1):204-209
|
CSCD被引
14
次
|
|
|
|
6.
Kang S C. Review of climate and cryospheric change in the Tibetan Plateau.
Environmental Research Letters,2010,5(1):015101
|
CSCD被引
75
次
|
|
|
|
7.
Yang K. Response of hydrological cycle to recent climate changes in the Tibetan Plateau.
Climatic Change,2011,109(3/4):517-534
|
CSCD被引
77
次
|
|
|
|
8.
Li X Y. Lake-level change and water balance analysis at Lake Qinghai, west China during recent decades.
Water Resources Management,2007,21(9):1505-1516
|
CSCD被引
29
次
|
|
|
|
9.
边多. 1975-2008年西藏色林错湖面变化对气候变化的响应.
地理学报,2010,65(3):313-319
|
CSCD被引
44
次
|
|
|
|
10.
Wu Y H. The response of lake-glacier variations to climate change in Nam Co Catchment,central Tibetan Plateau,during 1970-2000.
Journal of Geographical Sciences,2008,18(2):177-189
|
CSCD被引
24
次
|
|
|
|
11.
拉巴. 基于TM影像的西藏当惹雍错湖面积变化及可能成因.
气象科技,2012,40(4):685-688
|
CSCD被引
4
次
|
|
|
|
12.
Ye Q H. Glacier and lake variations in the Yamzhog Yumco basin, southern Tibetan Plateau, from 1980 to 2000 using remote-sensing and GIS technologies.
Journal of Glaciology,2007,53(183):673-676
|
CSCD被引
20
次
|
|
|
|
13.
Nie Y. Lake change and its implication in the vicinity of Mt. Qomolangma (Everest), central high Himalayas, 1970-2009.
Environmental Earth Sciences,2013,68(1):251-265
|
CSCD被引
12
次
|
|
|
|
14.
Ye Q H. Glacier and lake co-variations and their responses to climate change in the Mapam Yumco Basin on Tibet.
Geographical Research (in Chinese),2008,27(5):1178-1190
|
CSCD被引
2
次
|
|
|
|
15.
万玮. 近30年来青藏高原羌塘地区东南部湖泊变化遥感分析.
湖泊科学,2010,22(6):874-881
|
CSCD被引
42
次
|
|
|
|
16.
Huang L. Changing inland lakes responding to climate warming in northeastern Tibetan Plateau.
Climatic Change,2011,109(3/4):479-502
|
CSCD被引
20
次
|
|
|
|
17.
李均力. 青藏高原内陆湖泊变化的遥感制图.
湖泊科学,2011,23(3):311-320
|
CSCD被引
53
次
|
|
|
|
18.
Lei Y B. Response of inland lake dynamics over the Tibetan Plateau to climate change.
Climatic Change,2014,125(2):281-290
|
CSCD被引
26
次
|
|
|
|
19.
Yang R M. Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013.
Climatic Change,2017,140(3):621-633
|
CSCD被引
15
次
|
|
|
|
20.
Yao T D. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings.
Nature Climate Change,2012,2(9):663-667
|
CSCD被引
274
次
|
|
|
|
|