帮助 关于我们

返回检索结果

基于MAX-DOAS观测大气Ring效应的气溶胶光学参数反演
Retrieval of Aerosol Optical Parameters Based on RingEffect Observed byMAX-DOAS

查看参考文献20篇

牟福生 1   李昂 1   吴丰成 1   谢品华 1 *   王杨 2   陈浩 1   徐晋 1   李素文 3  
文摘 Ring效应是指大气分子对太阳光的转动拉曼散射致使太阳光中夫琅禾费线变浅的现象。气溶胶能够改变光子在大气中的路径和大气散射性质,最终影响夫琅禾费线的填充程度,因此可以通过观测Ring效应强度获取气溶胶信息。分析了Ring效应对气溶胶光学参量(气溶胶光学厚度、单次散射反照率、非对称因子等)的敏感性,发展了一种结合大气辐射传输模型并利用地基多轴差分吸收光谱(MAX-DOAS)仪器观测的Ring效应获取气溶胶光学特性的新方法。将MAX-DOAS反演结果和太阳光度计的观测结果进行了对比,两者一致性较好。研究表明,基于地基MAX-DOAS观测的Ring效应可以实现气溶胶光学特性的探测。
其他语种文摘 Ring effect is defined as the phenomenon that the depth of solar Fraunhofer lines shallows caused by solar rotational Raman scattering of sunlight.Aerosol can change the atmospheric light paths of photons and atmospheric scattering properties,and then influence the filling-in of Fraunhofer lines,so we can retrieve the aerosol information from the intensity of Ring effect.Sensitivity of the Ring effect to optical parameters of aerosol is analyzed,including aerosol optical depth,single scattering albedo and asymmetry factor.A new method for determining aerosol optical properties by ground-based multi-axis differential optical absorption spectroscopy(MAX-DOAS)observation and the atmospheric radiative transfer model is developed.The MAX-DOAS retrieval result is in good agreement with the measurement result from sun photometer.The study shows that the Ring effect observed by ground-based MAX-DOAS can be used to detect the aerosol properties.
来源 光学学报 ,2017,37(7):0701001-1-0701001-8 【核心库】
DOI 10.3788/AOS201737.0701001
关键词 大气光学 ; 大气Ring效应 ; 多轴差分吸收光谱 ; 气溶胶 ; 非对称因子
地址

1. 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽, 合肥, 230031  

2. 马普化学研究所, 德国, 美因茨, D-55128  

3. 淮北师范大学物理与电子信息学院, 安徽, 淮北, 235000

语种 中文
文献类型 研究性论文
ISSN 0253-2239
学科 环境科学基础理论
基金 国家自然科学基金 ;  国家863计划 ;  安徽省科技攻关项目 ;  安徽省自然科学基金
文献收藏号 CSCD:6028757

参考文献 共 20 共1页

1.  Rosenfeld D. Aerosols,clouds,and climate. Science,2006,312(5778):1323-1324 被引 24    
2.  Finlayson-Pitts B J. Chemistry of the upper and lower atmosphere:Theory,experiments,and applications,1999 被引 1    
3.  Huebert B J. An overview of ACE-Asia:Strategies for quantifying the relationships between Asian aerosol and their climatic impacts. Journal of Geophysical Research,2003,108(D23):8633 被引 54    
4.  Ramanathan V. Aerosols,climate,and the hydrological cycle. Science,2001,294(5549):2119-2124 被引 272    
5.  吴丰成. 基于车载差分吸收光谱技术的城市大气污染物探测研究,2013 被引 1    
6.  李菲. 微量振荡天平法与激光散射单粒子法在气溶胶观测中的对比试验研究. 热带气象学报,2015,31(4):497-504 被引 2    
7.  Dubovik O. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the Atmospheric Sciences,2002,59(3):590-608 被引 122    
8.  Ancellet G. Compact airborne lidar for tropospheric ozone:Description and field measurements. Applied Optics,1998,37(24):5509-5521 被引 3    
9.  Wagner T. MAX-DOAS O_4 measurements:A new technique to derive information on atmospheric aerosols -Principles and information content. Journal of Geophysical Research,2004,109(D22):D22205 被引 25    
10.  Wagner T. Three-dimensional simulation of the Ring effect in observations of scattered sun light using Monte Carlo radiative transfer models. Atmospheric Measurement Techniques,2009,2(1):113-124 被引 4    
11.  Wagner T. Determination of aerosol properties from MAX-DOAS observations of the Ring effect. Atmospheric Measurement Techniques,2009,2(2):495-512 被引 8    
12.  Ortega I. The CU 2-D-MAX-DOAS instrument-Part 2:Raman scattering probability measurements and retrieval of aerosol optical properties. Atmospheric Measurement Techniques,2016,9(8):3893-3910 被引 2    
13.  裴显. 基于Monte Carlo大气辐射传输模型的Ring效应模拟. 大气与环境光学学报,2013,8(5):354-363 被引 4    
14.  Wang Y. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy. Atmospheric Measurement Techniques,2014,7(6):1663-1680 被引 5    
15.  吴丰成. 基于多轴差分吸收光谱技术的查找表法反演气溶胶消光廓线研究. 光学学报,2013,33(6):0601002 被引 8    
16.  牟福生. 基于MAX-DOAS观测大气Ring效应的气溶胶消光廓线反演. 光学学报,2015,35(11):1101001 被引 2    
17.  Fayt C. WinDOAS 2.1software user manual,2016 被引 1    
18.  Vandaele A C. Measurements of the NO_2 absorption cross-sections from 42000cm-1 to 10000cm-1 (238-1000nm)at 220Kand 294K. Journal of Quantitative Spectroscopy and Radiative Transfer,1998,59(3/5):171-184 被引 35    
19.  Bogumil K. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model:Instrument characterization and reference data for atmospheric remote sensing in the 230-2380nm region. Journal of Photochemistry and Photobiology A:Chemistry,2003,157(2/3):167-184 被引 32    
20.  Meller R. Temperature dependence of the absorption cross sections of formaldehyde between 223and 323Kin the wavelength range 225-375nm. Journal of Geophysical Research Atmospheres,2000,105(D6):7089-7101 被引 28    
引证文献 3

1 杨太平 基于机载平台测量地表反照率的方法 光学学报,2017,37(12):1228001-1-1228001-8
被引 2

2 牟福生 多轴差分吸收光谱技术测量对流层SO_2垂直廓线及柱浓度 光学学报,2019,39(8):0801001
被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号