Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects
查看参考文献54篇
文摘
|
Chiral anomaly-induced negative magnetoresistance (NMR) has been widely used as critical transport evidence for the existence of Weyl fermions in topological semimetals. In this mini-review, we discuss the general observation of NMR phenomena in non-centrosymmetric NbP and NbAs. We show that NMR can arise from the intrinsic chiral anomaly of Weyl fermions and/or extrinsic effects,such as the superimposition of Hall signals; field-dependent inhomogeneous current flow in the bulk, i.e., current jetting; and weak localization (WL) of coexistent trivial carriers. The WL-controlled NMR is heavily dependent on sample quality and is characterized by a pronounced crossover from positive to negative MR growth at elevated temperatures, resulting from the competition between the phase coherence time and the spin-orbital scattering constant of the bulk trivial pockets. Thus,the correlation between the NMR and the chiral anomaly need to be scrutinized without the support of complimentary techniques. Because of the lifting of spin degeneracy, the spin orientations of Weyl fermions are either parallel or antiparallel to the momentum, which is a unique physical property known as helicity. The conservation of helicity provides strong protection for the transport of Weyl fermions, which can only be effectively scattered by magnetic impurities. Chemical doping with magnetic and non-magnetic impurities is thus more convincing than the NMR method for detecting the existence of Weyl fermions. |
来源
|
Frontiers of Physics
,2017,12(3):127205-1-127205-10 【核心库】
|
DOI
|
10.1007/s11467-016-0636-8
|
关键词
|
Weyl semimetals
;
chiral anomaly
;
negative magnetoresistance
;
extrinsic effects
|
地址
|
1.
Department of Physics,Zhejiang University, Hangzhou, 310027
2.
Department of Physics,Zhejiang University, State Key Lab of Silicon Materials, Hangzhou, 310027
3.
Institute of High Energy Physics,Chinese Academy of Sciences, Beijing, 100049
4.
Zhejiang University, State Key Lab of Silicon Materials, Hangzhou, 310027
5.
Department of Physics,Zhejiang University, Collaborative Innovation Centre of Advanced Micro structures, Hangzhou, 310027
6.
Department of Physics,Zhejiang University, State Key Lab of Silicon Materials;;Collaborative Innovation Centre of Advanced Micro structures, Hangzhou, 310027
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
2095-0462 |
学科
|
物理学 |
基金
|
国家973计划
;
国家自然科学基金
;
MOE of China
;
the Fundamental Research Funds for the Central Universities of China
;
the National Key R&D Pro gram of the MOST of China
|
文献收藏号
|
CSCD:6025596
|
参考文献 共
54
共3页
|
1.
Wallace P R. The band theory of graphite.
Phys. Rev,1947,71(9):622
|
CSCD被引
109
次
|
|
|
|
2.
Weyl H. Elektron und gravitation. I.
Z. Phys,1929,56(5/6):330
|
CSCD被引
23
次
|
|
|
|
3.
Novoselov K S. Two-dimensional gas of massless Dirac fermions in graphene.
Nature,2005,438(7065):197
|
CSCD被引
862
次
|
|
|
|
4.
Zhang Y B. Experimental observation of the quantum Hall effect and Berry's phase in graphene.
Nature,2005,438(7065):201
|
CSCD被引
713
次
|
|
|
|
5.
Hasan M Z. Colloquium: Topological insulators.
Rev. Mod. Phys,2010,82(4):3045
|
CSCD被引
711
次
|
|
|
|
6.
Qi X L. Topological insulators and superconductors.
Rev. Mod. Phys,2011,83(4):1057
|
CSCD被引
631
次
|
|
|
|
7.
Young S M. Dirac semimetal in three dimensions.
Phys. Rev. Lett,2012,108(14):140405
|
CSCD被引
92
次
|
|
|
|
8.
Wang Z. Three-dimensional Dirac semimetal and quantum transport in Cd_3As_2.
Phys. Rev. B,2013,88(12):125427
|
CSCD被引
113
次
|
|
|
|
9.
Tian L. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd_3As_2.
Nat. Mater,2015,14:280
|
CSCD被引
4
次
|
|
|
|
10.
Wan X G. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates.
Phys. Rev. B,2011,83(20):205101
|
CSCD被引
233
次
|
|
|
|
11.
Weng H. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides.
Phys. Rev. X,2015,5(1):011029
|
CSCD被引
161
次
|
|
|
|
12.
Huang S. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class.
Nat. Commun,2015,6:7373
|
CSCD被引
3
次
|
|
|
|
13.
Bian G.
Topological nodal-line fermions in the non-centrosymmetric superconductor compound PbTaSe_2,2015
|
CSCD被引
1
次
|
|
|
|
14.
Halasz G B. Time-reversal invariant realization of the Weyl semimetal phase.
Phys. Rev. B,2012,85(3):035103
|
CSCD被引
13
次
|
|
|
|
15.
Xu S Y. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide.
Nat. Phys,2015,11(9):748
|
CSCD被引
44
次
|
|
|
|
16.
Lv B Q. Experimental discovery of Weyl semimetal TaAs.
Phys. Rev. X,2015,5(3):031013
|
CSCD被引
123
次
|
|
|
|
17.
Lv B Q. Observation of Fermiarc spin texture in TaAs.
Phys. Rev. Lett,2015,115:217601
|
CSCD被引
16
次
|
|
|
|
18.
Xu S. Discovery of a Weyl fermion semimetal and topological Fermi arcs.
Science,2015,349(6248):613
|
CSCD被引
3
次
|
|
|
|
19.
Zhang C.
Tantalum monoarsenide: An exotic compensated semimetal,2015
|
CSCD被引
2
次
|
|
|
|
20.
Huang X. Observation of the chiral anomaly induced negative magnetoresistance in 3D Weyl semimetal TaAs.
Phys. Rev. X,2015,5(3):031023
|
CSCD被引
96
次
|
|
|
|
|