帮助 关于我们

返回检索结果

Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects

查看参考文献54篇

文摘 Chiral anomaly-induced negative magnetoresistance (NMR) has been widely used as critical transport evidence for the existence of Weyl fermions in topological semimetals. In this mini-review, we discuss the general observation of NMR phenomena in non-centrosymmetric NbP and NbAs. We show that NMR can arise from the intrinsic chiral anomaly of Weyl fermions and/or extrinsic effects,such as the superimposition of Hall signals; field-dependent inhomogeneous current flow in the bulk, i.e., current jetting; and weak localization (WL) of coexistent trivial carriers. The WL-controlled NMR is heavily dependent on sample quality and is characterized by a pronounced crossover from positive to negative MR growth at elevated temperatures, resulting from the competition between the phase coherence time and the spin-orbital scattering constant of the bulk trivial pockets. Thus,the correlation between the NMR and the chiral anomaly need to be scrutinized without the support of complimentary techniques. Because of the lifting of spin degeneracy, the spin orientations of Weyl fermions are either parallel or antiparallel to the momentum, which is a unique physical property known as helicity. The conservation of helicity provides strong protection for the transport of Weyl fermions, which can only be effectively scattered by magnetic impurities. Chemical doping with magnetic and non-magnetic impurities is thus more convincing than the NMR method for detecting the existence of Weyl fermions.
来源 Frontiers of Physics ,2017,12(3):127205-1-127205-10 【核心库】
DOI 10.1007/s11467-016-0636-8
关键词 Weyl semimetals ; chiral anomaly ; negative magnetoresistance ; extrinsic effects
地址

1. Department of Physics,Zhejiang University, Hangzhou, 310027  

2. Department of Physics,Zhejiang University, State Key Lab of Silicon Materials, Hangzhou, 310027  

3. Institute of High Energy Physics,Chinese Academy of Sciences, Beijing, 100049  

4. Zhejiang University, State Key Lab of Silicon Materials, Hangzhou, 310027  

5. Department of Physics,Zhejiang University, Collaborative Innovation Centre of Advanced Micro structures, Hangzhou, 310027  

6. Department of Physics,Zhejiang University, State Key Lab of Silicon Materials;;Collaborative Innovation Centre of Advanced Micro structures, Hangzhou, 310027

语种 英文
文献类型 研究性论文
ISSN 2095-0462
学科 物理学
基金 国家973计划 ;  国家自然科学基金 ;  MOE of China ;  the Fundamental Research Funds for the Central Universities of China ;  the National Key R&D Pro gram of the MOST of China
文献收藏号 CSCD:6025596

参考文献 共 54 共3页

1.  Wallace P R. The band theory of graphite. Phys. Rev,1947,71(9):622 CSCD被引 109    
2.  Weyl H. Elektron und gravitation. I. Z. Phys,1929,56(5/6):330 CSCD被引 23    
3.  Novoselov K S. Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005,438(7065):197 CSCD被引 862    
4.  Zhang Y B. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature,2005,438(7065):201 CSCD被引 713    
5.  Hasan M Z. Colloquium: Topological insulators. Rev. Mod. Phys,2010,82(4):3045 CSCD被引 711    
6.  Qi X L. Topological insulators and superconductors. Rev. Mod. Phys,2011,83(4):1057 CSCD被引 631    
7.  Young S M. Dirac semimetal in three dimensions. Phys. Rev. Lett,2012,108(14):140405 CSCD被引 92    
8.  Wang Z. Three-dimensional Dirac semimetal and quantum transport in Cd_3As_2. Phys. Rev. B,2013,88(12):125427 CSCD被引 113    
9.  Tian L. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd_3As_2. Nat. Mater,2015,14:280 CSCD被引 4    
10.  Wan X G. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B,2011,83(20):205101 CSCD被引 233    
11.  Weng H. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X,2015,5(1):011029 CSCD被引 161    
12.  Huang S. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun,2015,6:7373 CSCD被引 3    
13.  Bian G. Topological nodal-line fermions in the non-centrosymmetric superconductor compound PbTaSe_2,2015 CSCD被引 1    
14.  Halasz G B. Time-reversal invariant realization of the Weyl semimetal phase. Phys. Rev. B,2012,85(3):035103 CSCD被引 13    
15.  Xu S Y. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys,2015,11(9):748 CSCD被引 44    
16.  Lv B Q. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X,2015,5(3):031013 CSCD被引 123    
17.  Lv B Q. Observation of Fermiarc spin texture in TaAs. Phys. Rev. Lett,2015,115:217601 CSCD被引 16    
18.  Xu S. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science,2015,349(6248):613 CSCD被引 3    
19.  Zhang C. Tantalum monoarsenide: An exotic compensated semimetal,2015 CSCD被引 2    
20.  Huang X. Observation of the chiral anomaly induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X,2015,5(3):031023 CSCD被引 96    
引证文献 4

1 张智强 外尔半金属及其输运特性 物理学进展,2018,38(3):101-131
CSCD被引 3

2 Li Shuai Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals Frontiers of Physics,2018,13(2):137303-1-137303-9
CSCD被引 1

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号