基于飞秒光纤激光器的光频率梳设计与研制技术
Design and Development Technique for Optical Frequency Comb Based on Femtosecond Fiber Lasers
查看参考文献51篇
文摘
|
提出了一种基于飞秒光纤激光器的光频率梳设计与研制技术。设计与研制出脉冲宽度为55fs、频率为210MHz的色散管理孤子锁模掺铒光纤激光器,并优化设计了啁啾脉冲光纤放大链路;由负色散高非线性光纤产生了频率范围为1080~2320nm的倍频程超连续谱,经f-2f(f为频率)自差拍检测出信噪比达32dB的载波包络偏移频率;通过将重复频率的4次谐波和载波包络偏移频率锁定到商用铷原子钟,实现了对光频率梳的高精度锁定。测量结果表明,1s计数门控时间下的重复频率和偏移频率标准偏差分别为0.65mHz和1.76mHz,100s采样时间下的Allan偏差分别为1.74×10~(-13)和1.80×10~(-11)。这种光纤光梳可望满足光频计量、光梳光谱、时频传递和微波产生等领域的应用需求。 |
其他语种文摘
|
A design and development technique for optical frequency comb based on femtosecond fiber laser is proposed.A dispersion-managed solution mode-locked erbium-doped fiber laser with pulse width of 55fs and frequency of 210 MHz is designed,and the chirped pulse fiber amplification link is optimized.An octave supercontinuum from 1080nm to 2320nm is generated by a fiber with high nonlinear,which makes the signal-tonoise ratio of the detected carrier-envelope offset frequency reach 32dB by the f-2f (f represents frequency) autodyne method.When the 4th harmonic wave of repetition rate and the carrier envelope offset frequency are locked to a commercial rubidium atomic clock,an optical frequency comb is locked with high precision.Measurement results show that the standard deviations of repetition rate and carrier envelope offset frequency are 0.65mHz and 1.76mHz at 1scounter gate time,corresponding to the Allan deviations of 1.74×10~(-13) and 1.80×10~(-11) for 100s sampling time,respectively.Such a fiber optical comb may meet applications in fields of optical frequency metrology,optical comb spectroscopy,timing and frequency transfer,microwave generation and so on. |
来源
|
中国激光
,2017,44(6):0601008-1-0601008-9 【核心库】
|
DOI
|
10.3788/CJL201744.0601008
|
关键词
|
激光器
;
光学频率梳
;
光纤激光器
;
锁模激光
;
重复频率
;
载波包络偏移频率
|
地址
|
1.
中国科学院安徽光学精密机械研究所, 中国科学院安徽光子器件与材料重点实验室, 安徽, 合肥, 230031
2.
中国计量科学研究院光学与激光计量科学研究所, 北京, 100029
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-7025 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
国家973计划
;
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:6021595
|
参考文献 共
51
共3页
|
1.
Hall J L. Nobel lecture:defining and measuring optical frequencies.
Reviews of Modern Physics,2006,78(4):1279-1295
|
CSCD被引
68
次
|
|
|
|
2.
Hansch T W. Nobel lecture:passion for precision.
Reviews of Modern Physics,2006,78(4):1297-1309
|
CSCD被引
64
次
|
|
|
|
3.
Cundiff S T. Colloquium:femtosecond optical frequency combs.
Reviews of Modern Physics,2003,75(1):325-342
|
CSCD被引
55
次
|
|
|
|
4.
Diddams S A. An optical clock based on a single trapped199 Hg~+ion.
Science,2001,293(5531):825-828
|
CSCD被引
50
次
|
|
|
|
5.
Minoshima K. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser.
Applied Optics,2000,39(30):5512-5517
|
CSCD被引
65
次
|
|
|
|
6.
Fox R W. Wavelength references for interferometry in air.
Applied Optics,2005,44(36):7793-7801
|
CSCD被引
3
次
|
|
|
|
7.
Swann W C. Frequency-resolved coherent lidar using a femtosecond fiber laser.
Optics Letters,2006,31(6):826-828
|
CSCD被引
5
次
|
|
|
|
8.
Holman K W. Remote transfer of a high-stability and ultralow-jitter timing signal.
Optics Letters,2005,30(10):1225-1227
|
CSCD被引
5
次
|
|
|
|
9.
Coddington I. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs.
Physical Review Letters,2008,100(1):013902
|
CSCD被引
34
次
|
|
|
|
10.
Mcferran J J. Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceophase excursions.
Applied Physics B,2007,86(2):219-227
|
CSCD被引
2
次
|
|
|
|
11.
Apolonski A. Controlling the phase evolution of few-cycle light pulses.
Physical Review Letters,2000,85(4):740-743
|
CSCD被引
19
次
|
|
|
|
12.
Washburn B R. Response dynamics of the frequency comb output from a femtosecond fiber laser.
Optics Express,2005,13(26):10622-10633
|
CSCD被引
4
次
|
|
|
|
13.
Stumpf M C. Self-referenceable frequency comb from a 170-fs,1.5-μm solid-state laser oscillator.
Applied Physics B,2010,99(3):401-408
|
CSCD被引
6
次
|
|
|
|
14.
Kim K. Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser.
Optics Letters,2005,30(8):932-934
|
CSCD被引
5
次
|
|
|
|
15.
Holzwarth R. White-light frequency comb generation with a diode-pumped Cr…LiSAF laser.
Optics Letters,2001,26(17):1376-1378
|
CSCD被引
10
次
|
|
|
|
16.
Washburn B R. Phase-locked,erbium-fiber-laser-based frequency comb in the near infrared.
Optics Letters,2004,29(3):250-252
|
CSCD被引
32
次
|
|
|
|
17.
Ruehl A. Advances in Yb…fiber frequency comb technology.
Optics and Photonics News,2012,23(5):30-35
|
CSCD被引
2
次
|
|
|
|
18.
Lee C C. Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator.
Optics Letters,2012,37(15):3084-3086
|
CSCD被引
4
次
|
|
|
|
19.
孟飞. 光纤飞秒光学频率梳的研制及绝对光学频率测量.
物理学报,2011,60(10):100601
|
CSCD被引
19
次
|
|
|
|
20.
Zhang Y Y. A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator.
Chinese Physics B,2015,24(6):064209
|
CSCD被引
10
次
|
|
|
|
|