帮助 关于我们

返回检索结果

基于MODIS遥感产品和神经网络模拟太阳辐射
Simulation of Solar Radiation Based on Neural Network and MODIS Remote Sensing Products

查看参考文献30篇

文摘 现有的神经网络模拟太阳辐射的模型很少考虑云、气溶胶、水汽对太阳辐射的影响,采用MODIS提供的气溶胶、云、水汽高空大气遥感产品和常规气象数据,输入LM(Levenberg-Marquardt)算法优化后的BP(Back-Propagation)神经网络模型(简称LM-BP)模拟了和田、西宁、固原、延安4个辐射站点的太阳辐射月均值。验证结果表明:神经网络模型中加入气溶胶、云、水汽之后,4个辐射站点的R~2均大于0.90,且各项误差指标均小于仅用常规气象站点数据模拟的太阳辐射结果。
其他语种文摘 Climate change is a major global issue of common concern of the international community, over the past century, the earth experienced a temperature rise, while solar radiation is an indicator of climate change. At the same time, solar radiation data is an important parameter about crop models, hydrological models and climate change models, many Artificial Neural Network ensemble models are developed to estimate solar radiation using routinely measured meteorolological variables, but it do not consider cloud, aerosol, and water vapor influence on solar radiation. In this article, we use cloud, aerosols, atmospheric precipitable water vapor from MODIS atmosphere remote sensing products and conventional meteorological data including air pressure, Air temperature, vapor pressure, relative humidity, and sunshine duration, and we analyze the relationship between solar radiation and meteorological data. In terms of conventional meteorological data, we make the selection of variables, the redundant variables are proposed. Then, BP artificial neural network model optimized by LM (Levenberg-Marquardt) algorithm (referred to as LM-BP) is used to stimulate solar radiation. This LM algorithm has fast local convergence feature about Gauss-Newton method, but also has global search feature about gradient descent method, which allows error along the direction of deterioration to search, and greatly improving the convergence rate and generalization ability of the network. Therefore, this article use LM-BP model to predict monthly mean daily global solar radiation from 2010 to 2013 about Hetian, Xining, Guyuan, Yan ' an radiating station using only conventional meteorological data(referred to as A) and using MODIS atmosphere remote sensing products binding conventional meteorological data(referred to as A +) respectively. Then, we validate performance of the model with measured data about radiation station. The results show that cloud amount, cloud optical thickness, aerosol optical depth, and atmospheric precipitable water vapor these factors are added to the established model, the degree of matching simulated solar radiation and actual observations is more higher. And correlation determination (R~2) for 4 radiation station are 0.90 or higher, while error indicators are small. This article showed that the use of LM-BP neural network model, combining with remote sensing data and conventional meteorological data to simulate solar radiation is a reasonable and effective way to simulate solar radiation.
来源 地理科学 ,2017,37(6):912-919 【核心库】
DOI 10.13249/j.cnki.sgs.2017.06.013
关键词 太阳辐射 ; MODIS ; 神经网络 ; LM-BP ; ; 气溶胶 ; 水汽
地址

西北师范大学地理与环境科学学院, 甘肃, 兰州, 730070

语种 中文
文献类型 研究性论文
ISSN 1000-0690
学科 大气科学(气象学)
基金 国家自然科学基金项目 ;  西北师范大学青年教师科研能力提升计划项目
文献收藏号 CSCD:6015787

参考文献 共 30 共2页

1.  Lu Ning. A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data. Energy,2011,36(5):3179-3188 CSCD被引 3    
2.  施国萍. 中国三种太阳辐射起始数据分布式模拟. 地理科学,2013,33(4):385-392 CSCD被引 7    
3.  查良松. 我国地面太阳辐射量的时空变化研究. 地理科学,1996,16(3):41-46 CSCD被引 5    
4.  赵东. 我国近50年来太阳直接辐射资源基本特征及其变化. 太阳能学报,2009,30(7):946-952 CSCD被引 25    
5.  曾燕. 起伏地形下黄河流域太阳直接辐射分布式模式. 地理学报,2005,60(4):680-688 CSCD被引 27    
6.  Chen Jilong. Estimation of monthly-mean global solar radiation using MODIS atmospheric product over China. Journal of Atmospheric and Solar-Terrestrial Physics,2014,110:63-80 CSCD被引 3    
7.  Sun Huaiwei. Study of solar radiation prediction and modeling of relationships between solar radiation and meteorological variables. Energy Conversion and Management,2015,105:880-890 CSCD被引 7    
8.  Teke A. Evaluation and performance comparison of different models for the estimation of solar radiation. Renewable and Sustainable Energy Reviews,2015,50:1097-1107 CSCD被引 8    
9.  Wu Ji. Prediction of solar radiation with genetic approach combing multi-model framework. Renewable Energy,2014,66:132-139 CSCD被引 3    
10.  Yao Wanxiang. New decomposition models to estimate hourly global solar radiation from the daily value. Solar Energy,2015,120:87-99 CSCD被引 5    
11.  Manzano A. A single method to estimate the daily global solar radiation from monthly data. Atmospheric Research,2015,166:70-82 CSCD被引 4    
12.  和清华. 我国太阳总辐射气候学计算方法研究. 自然资源学报,2010,25(2):308-319 CSCD被引 48    
13.  Shamim M A. An improved technique for global solar radiation estimation using numerical weather prediction. Journal of Atmospheric and Solar-Terrestrial Physics,2015,129:13-22 CSCD被引 3    
14.  周开利. 神经网络模型及其MATLAB仿真程序设计,2005 CSCD被引 196    
15.  Lam J C. Solar radiation modelling using ANNs for different climates in China. Energy Conversion and Management,2008,49(5):1080-1090 CSCD被引 1    
16.  Wan K K W. An analysis of thermal and solar zone radiation models using an Angstrom-Prescott equation and artificial neural networks. Energy,2008,33(7):1115-1127 CSCD被引 6    
17.  Ozgoren M. Estimation of global solar radiation using ANN over Turkey. Expert Systems with Applications,2012,39(5):5043-5051 CSCD被引 5    
18.  Senkal O. Modeling of solar radiation using remote sensing and artificial neural network in Turkey. Energy,2010,35(12):4795-4801 CSCD被引 2    
19.  曹双华. 小波分析在太阳辐射神经网络预测中的应用研究. 东华大学学报:自然科学版,2004,30(6):18-22 CSCD被引 5    
20.  李净. 利用LM-BP神经网络估算西北地区太阳辐射. 干旱区地理,2015,38(3):438-445 CSCD被引 7    
引证文献 6

1 冯姣姣 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析 遥感技术与应用,2018,33(5):881-889,955
CSCD被引 3

2 李净 基于3种机器学习法的太阳辐射模拟研究 遥感技术与应用,2020,35(3):615-622
CSCD被引 7

显示所有6篇文献

论文科学数据集

1. 中国716个气象站太阳辐射日均值数据集(1961-2010)

2. 中国区域融合日照时数的高分辨率(10km)地表太阳辐射数据集(1983-2017)

3. 全球高分辨率(3小时,10公里)地表太阳辐射数据集(1983-2018)

数据来源:
国家青藏高原科学数据中心

1. 2010-2020年中国东部和北部地区NNAero反演AOD和FMF数据集

2. HTDMA和HR-ToF-AMS测定北京2016年冬与2017年夏不同粒径粒子吸湿增长因子和化学组分数据集

3. 中国7个气候区太阳辐射Angstrom-Prescott模型参数预测和校正数据集(1981-2016)

数据来源:
国家对地观测科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号