二叠纪峨眉山地幔柱岩浆成矿作用的多样性
Metallogenic Diversity Related to the Late Middle Permian Emeishan Large Igneous Province
查看参考文献104篇
文摘
|
二叠纪峨眉山地幔柱形成了规模巨大的大火成岩省、并伴随众多具有经济价值的矿床。地幔柱岩浆分别形成了高钛和低钛2个主要玄武质岩浆系列,并显示了一定的成矿专属性,赋存铜镍硫化物矿床的小型镁铁-超镁铁质岩体原始岩浆的成分类似区内低钛苦橄岩,而赋存钒钛磁铁矿矿床的层状岩体,其原始岩浆成分特征与高钛苦橄岩类似。不同含矿岩体的岩石学、地球化学和含矿性各有差异,这主要取决于岩浆源区特征、岩浆演化过程、地壳混染和岩浆侵位过程。本文对峨眉山地幔柱岩浆成矿作用近年来在上述几方面的研究进展进行了综合和评述,指出地幔柱成矿作用研究存在的一些值得研究的问题。 |
其他语种文摘
|
The Permian Emeishan mantle plume is responsible for the generation of a large igneous province and associated economically important mineral deposits. Plume-derived basaltic magmas can be divided into two series in term of geochemical compositions,i.e.,high-Ti and low-Ti series. Each of the series is genetically linked to distinct types of mineral deposits. Ni-Cu-(PGE) sulfide deposits are hosted in small mafic-ultramafic intrusions which are supposed to be derived from low-Ti picritic magma due to high degrees of partial melting of shallower mantle source,whereas Fe-Ti oxide deposits hosted in layered intrusions are supposed to be derived from high-Ti picritic magmas due to low degrees of partial melting of deep mantle source. The diversity in different ore-bearing intrusions is related to several key controlling factors,such as magma source,fractionation process of magma,crustal contamination and transportation and emplacement of magma. The review is given for the recent progress on the key issues of plume-related mineralization and outstanding issues worth for future research. |
来源
|
矿物岩石地球化学通报
,2017,36(3):404-417 【核心库】
|
DOI
|
10.3969/j.issn.1007-2802.2017.03.004
|
关键词
|
峨眉山大火成岩省
;
地幔柱岩浆成矿作用
;
成矿作用多样性
;
关键控矿因素
|
地址
|
中国科学院广州地球化学研究所, 中国科学院矿物学与成矿学重点实验室, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
国家973计划
;
国家自然科学基金国家杰出青年科学基金
|
文献收藏号
|
CSCD:6012223
|
参考文献 共
104
共6页
|
1.
Arndt N T. Insights into the geologic setting and origin of Ni-Cu-PGE sulfide deposits of the Norilsk-Talnakh region, Siberia.
Reviews in Economic Geology,2011,17:190-215
|
CSCD被引
1
次
|
|
|
|
2.
Arndt N T. Czamanske G. Mantlederived magmas and magmatic Ni-Cu-(PGE) deposits.
Economic Geology,100th Anniversary Volume,2005:5-33
|
CSCD被引
8
次
|
|
|
|
3.
Bai Z J. Whole-rock and mineral composition constraints on the genesis of the giant Hongge Fe-Ti-V oxide deposit in the Emeishan Large Igneous Province, Southwest China.
Economic Geology,2012,107(3):507-524
|
CSCD被引
32
次
|
|
|
|
4.
Barnes S J. Formation of magmatic nickel sulfide ore deposits and processes affecting their copper and platinum group element contents.
Economic Geology 100th Anniversary Volume,2005:179-213
|
CSCD被引
31
次
|
|
|
|
5.
Bezmen N I. Distribution of Pd, Rh, Ru, Jr, Os, and Au between sulfide and silicate metals.
Geochimica et Cosmochimica Acta,1994,58(4):1251-1260
|
CSCD被引
29
次
|
|
|
|
6.
Bryan S E. Revised definition of large igneous provinces(LIPs).
Earth-Science Reviews,2008,86(1/4):175-202
|
CSCD被引
108
次
|
|
|
|
7.
Bryan S E. Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years.
Geological Society of America Bulletin,2013,125(7/8):1053-1078
|
CSCD被引
23
次
|
|
|
|
8.
Campbell I H. The influence of silicate: sulfide ratios on the geochemistry of magmatic sulfides.
Economic Geology,1979,74(6):1503-1505
|
CSCD被引
43
次
|
|
|
|
9.
Cawthorn R G. Variations in Cr content of magnetite from the upper zone of the Bushveld Complex-evidence for heterogeneity and convection currents in magma chambers.
Earth and Planetary Science Letters,1980,46(3):335-343
|
CSCD被引
8
次
|
|
|
|
10.
Charlier B. Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap.
Geology,2011,39(10):907-910
|
CSCD被引
20
次
|
|
|
|
11.
Chung S L. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary.
Geology,1995,23(10):889-892
|
CSCD被引
240
次
|
|
|
|
12.
De Bremond D'ars J. Analog experimental insights into the formation of magmatic sulfide deposits.
Earth and Planetary Science Letters,2001,186(3/4):371-381
|
CSCD被引
5
次
|
|
|
|
13.
Dong H. Textures and mineral compositions of the Xinjie layered intrusion, SW China: Implications for the origin of magnetite and fractionation process of Fe-Ti-rich basaltic magmas.
Geoscience Frontiers,2013,4(5):503-515
|
CSCD被引
15
次
|
|
|
|
14.
Donoghue K A. Sulfur isotope and mineralogical studies of Ni-Cu sulfide mineralization in the bovine igneous complex intrusion, Baraga Basin, Northern Michigan.
Economic Geology,2014,109(2):325-341
|
CSCD被引
5
次
|
|
|
|
15.
Ernst R E. Frontiers in large igneous province research.
Lithos,2005,79(3/4):271-297
|
CSCD被引
78
次
|
|
|
|
16.
Ernst R E. Large Igneous Provinces(LIPs) and metallogeny.
Tectonics,Metallogeny,and Discovery: The North American Cordillera and Similar Accretionary Settings. Society of Economic Geologists Special Publication,17,2013:17-51
|
CSCD被引
1
次
|
|
|
|
17.
Fischer L A. Immiscible iron-and silica-rich liquids in the upper Zone of the Bushveld Complex.
Earth and Planetary Science Letters,2016,443:108-117
|
CSCD被引
3
次
|
|
|
|
18.
Fleet M E. Partitioning of platinumgroup elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt.
Geochimica et Cosmochimica Acta,1996,60(13):2397-2412
|
CSCD被引
75
次
|
|
|
|
19.
Hawkesworth C J. Magma differentiation and mineralisation in the Siberian continental flood basalts.
Lithos,1995,34(1/3):61-88
|
CSCD被引
29
次
|
|
|
|
20.
Holness M B. Silicate liquid immiscibility within the crystal mush: Late-stage magmatic microstructures in the Skaergaard intrusion, East Greenland.
Journal of Petrology,2011,52(1):175-222
|
CSCD被引
14
次
|
|
|
|
|