基于过程变量-火焰面模型的湍流燃烧大涡模拟
Large-eddy simulation of turbulent combustion based on steady flamelet/progress variable approach
查看参考文献42篇
文摘
|
湍流燃烧常伴随着复杂的流动过程和燃烧现象. 先进的燃烧模型与大涡模拟结合为模拟湍流燃烧提供了有利的工具. 过程变量-火焰面模型是在火焰面模型的基础上发展起来的. 由于引入了过程变量, 过程变量-火焰面模型可以描述诸如局部熄火和再燃等复杂的燃烧现象. 为了验证基于过程变量-火焰面模型的大涡模拟方法, 近年来开展了一系列的数值模拟工作. 在非预混火焰、部分预混火焰、抬升火焰、旋流火焰等火焰的模拟中, 基于过程变量-火焰面模型的大涡模拟方法都得到了很好的验证. 在此基础之上, 基于过程变量-火焰面模型的大涡模拟也被用于燃气轮机燃烧室的模拟, 并开始用于预测一些基本的燃烧现象. 随着过程变量-火焰面模型的不断发展, 基于过程变量-火焰面模型的大涡模拟方法将在湍流燃烧模拟中发挥更重要的作用. |
其他语种文摘
|
Turbulent combustion is often accompanied by complex phenomena of flow and combustion. Combining with advanced combustion model, LES provides a powerful tool to simulate turbulent combustion. Based on flamelet model, with a progress variable introduced, the flamelet/progress variable approach is enabled to describe complex phenomena in turbulent combustion such as local extinction and re-ignition. Recently, in order to validate the LES based flamelet/progress variable (LES-FPV) approach, a series of numerical simulations were carried out. In the simulations of non-premixed flame, partially premixed flame, lifted flame and swirl flame, the approach showed good performance and was then used to simulate gas turbine combustor, and to predict some basic combustion phenomena. With continuous development, LES-FPV approach will play an increasingly important role in simulating turbulent combustion. |
来源
|
中国科学. 物理学
, 力学, 天文学,2017,47(7):070007-1-070007-12 【核心库】
|
DOI
|
10.1360/SSPMA2016-00410
|
关键词
|
湍流燃烧
;
大涡模拟
;
火焰面模型
;
过程变量方法
|
地址
|
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1674-7275 |
学科
|
能源与动力工程 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6006581
|
参考文献 共
42
共3页
|
1.
Peters N. Laminar flamelet concepts in turbulent combustion.
Symp (Int) Combust,1988,21:1231-1250
|
CSCD被引
13
次
|
|
|
|
2.
Williams F A. Recent advances in theoretical description of turbulent diffusion flames.
Turbulent Mixing in Nonreactive and Reactive Flows,1975:189-208
|
CSCD被引
2
次
|
|
|
|
3.
Peters N. Local quenching of diffusion flamelets and non-premixed turbulent combustion.
Western States Section of the Combustion Institute: Spring Meeting, WSS 80-84,1980
|
CSCD被引
1
次
|
|
|
|
4.
Kuznetsov V R. Effect of turbulence on the formation of large superequilibrium concentration of atoms and free radicals in diffusion flames.
Mehan Zhidkosti Gasa,1982,6:3-9
|
CSCD被引
1
次
|
|
|
|
5.
Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion.
Prog Energy Combust Sci,1984,10:319-339
|
CSCD被引
89
次
|
|
|
|
6.
Cook A W. A laminar flamelet approach to subgrid-scale chemistry in turbulent flows.
Combust Flame,1997,109:332-341
|
CSCD被引
6
次
|
|
|
|
7.
Pitsch H. Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D).
Phys Fluids,2000,12:2541-2554
|
CSCD被引
11
次
|
|
|
|
8.
Pierce C D. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion.
J Fluid Mech,1999,504:73-97
|
CSCD被引
53
次
|
|
|
|
9.
Barlow R S. The 1st Turbulent nonpremixed flames workshop.
Proceedings of the International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames,1996
|
CSCD被引
1
次
|
|
|
|
10.
Barlow R S. Effects of turbulence on species mass fractions in methane/air jet flames.
Symp (Int) Combust,1998,27:1087-1095
|
CSCD被引
13
次
|
|
|
|
11.
Ihme M. Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model.
Combust Flame,2008,155:70-89
|
CSCD被引
16
次
|
|
|
|
12.
Ihme M. Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model.
Combust Flame,2008,155:90-107
|
CSCD被引
20
次
|
|
|
|
13.
Dally B B. Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames.
Combust Flame,1998,114:119-148
|
CSCD被引
20
次
|
|
|
|
14.
Dally B B. Flow and mixing fields of turbulent bluff-body jets and flames.
Combust Theor Model,1998,2:193-219
|
CSCD被引
12
次
|
|
|
|
15.
杨涛. 钝体射流火焰及其点火过程的大涡模拟.
力学学报,2016,48:1290-1300
|
CSCD被引
1
次
|
|
|
|
16.
Kempf A. Large-eddy simulation of a bluff-body stabilized nonpremixed flame.
Combust Flame,2006,144:170-189
|
CSCD被引
7
次
|
|
|
|
17.
Cabra R. Simultaneous laser raman-rayleigh-lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow.
Proc Combust Inst,2002,29:1881-1888
|
CSCD被引
17
次
|
|
|
|
18.
Cabra R. Lifted methane-air jet flames in a vitiated coflow.
Combust Flame,2005,143:491-506
|
CSCD被引
13
次
|
|
|
|
19.
Ihme M. Prediction of autoignition in a lifted methane/air flame using an unsteady flamelet/progress variable model.
Combust Flame,2010,157:1850-1862
|
CSCD被引
13
次
|
|
|
|
20.
Dally B B. Structure of turbulent non-premixed jet flames in a diluted hot coflow.
Proc Combust Inst,2002,29:1147-1154
|
CSCD被引
24
次
|
|
|
|
|