贵州普定6种喀斯特石生植物及其土壤的碳酸酐酶活性
Carbonic anhydrase activity of six epilithic mosses and their underlying soil in the Puding karst area,Guizhou Province
查看参考文献32篇
文摘
|
以贵州普定喀斯特石漠化区域石生银叶真藓(Bryum argenteum Hedw.)、扭口藓(Barbula unguicula ta Hedw.)、穗枝赤齿藓(Erythrodontium julaceum (Schwaegr. )Par.)、美灰藓(Eurohypnum leptothollum (C. Muell. )Ando. )、东亚砂藓(Racomitrium japonicum Dozy et Molk.)和雪茶(地衣)(Thamnolia vermicularia (Ach. )Asa - hina)为对象,研究了这些石生植物和其基质土壤碳酸酐酶(CA)的活性,可为石生植物的生物岩溶作用机理和石漠化生态环境的治理提供一定的参考。结果表明,6种植物CA的活性存在一定的差异,以美灰藓的CA活性272.99 U · g~(-1) (FW)最高,东亚砂藓的CA活性33.45 U · g~(-1) (FW)最低;银叶真藓基部土壤CA活性最高,为101.81 U · g~(-1)(干土),美灰藓CA活性15.95 U · g~(-1) (干土)最低。CA活性与土壤全磷、全钾、石砾含量和土壤含水量之间呈极显著的相关性。 |
其他语种文摘
|
The samples of six moss plants include B. argenteum, B. unguiculata, E. julaceum, E. leptothollum,R japonicum and T vermicularia were collected from the karst rock desertification area in Puding of Guizhou,as the objects of this study. The carbonic anhydrase (CA) activity of the epilithic plants and the matrix of soil was studied, from which the analyses of bio-karst mechanism and governance of ecological environments in karst rocky desertification areas can be performed. The results show that there are some differences in carbonic anhydrase activity of six epilithic plants. The E. leptothollum is highest,reaching 272.99 U · g~(-1) (FW),while the minimum is 33.45 U · g~(-1) (FW) in R. japonicum. The B. argenteum base soil CA activity(101.81 U · g~(-1) (dry soil) is the highest. The E. leptothollum is 15.95 U · g~(-1) (dry soils) as the lowest. It could be concluded that CA activity has positive correlations with plant and soil carbonic anhydrase content of total phosphorus,kalium, gravel and soil moisture,respectively. |
来源
|
中国岩溶
,2017,36(2):187-192 【扩展库】
|
DOI
|
10.11932/karst20170205
|
关键词
|
喀斯特石漠化
;
石生植物
;
碳酸酐酶
;
土壤
|
地址
|
1.
安顺学院, 贵州, 安顺, 561000
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550002
3.
安顺学院, 环境地球化学国家重点实验室, 贵州, 安顺, 561000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4810 |
学科
|
植物学;农业基础科学 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:5984665
|
参考文献 共
32
共2页
|
1.
Wang N. Gold nanoparticles-enhanced bisphenol A electrochemical biosensor based on tyrosinase immobilized onto self-assembled monolayers-modified gold electrode.
Chin Chem Lett,2014,25(5):720-722
|
CSCD被引
4
次
|
|
|
|
2.
Portaccio M. A thionine-modified carbon paste amperometric biosensor for catechol and bisphenol A determination.
Biosens Bioelectron,2010,25(9):2003-2008
|
CSCD被引
9
次
|
|
|
|
3.
Yin H S. Preparation and characteristic of cobalt phthalocyanine modified carbon paste electrode for bisphenol A detection.
J Electroanal Chem,2009,626(1/2):80-88
|
CSCD被引
13
次
|
|
|
|
4.
Roelofs M J. Structural bisphenol analogues differentially target steroidogenesis in murine MA-10 Leydig cells as well as the glucocorticoid receptor.
Toxicology,2015,329:10-20
|
CSCD被引
4
次
|
|
|
|
5.
Zheng Z. Pt/Graphene-CNTs nanocomposite based electrochemical sensors for the determination of endocrine disruptor bisphenol A in thermal printing papers.
Analyst,2012,138(2):693-701
|
CSCD被引
2
次
|
|
|
|
6.
Mathew M. Exploring the interaction of bisphenol-S with serum albumins:a better or worse alternative for bisphenol A.
J Phys Chem B,2014,118(14):3832-3843
|
CSCD被引
5
次
|
|
|
|
7.
Eladak S. A new chapter in the bisphenol A story:bisphenol S and bisphenol F are not safe alternatives to this compound.
Fertil Steril,2015,103(1):11-21
|
CSCD被引
17
次
|
|
|
|
8.
Helies-Toussaint C. Is bisphenol S a safe substitute for bisphenol A in terms of metabolic function? An in vitro study.
Toxicol Appl Pharmacol,2014,280(2):224-235
|
CSCD被引
11
次
|
|
|
|
9.
Liao C. Bisphenol s,a new bisphenol analogue,in paper products and currency bills and its association with bisphenol a residues.
Environ Sci Technol,2012,46(12):6515-6522
|
CSCD被引
14
次
|
|
|
|
10.
Castro B. Bisphenol A,bisphenol F and bisphenol S affect differently 5α-reductase expression and dopamine-serotonin systems in the prefrontal cortex of juvenile female rats.
Environ Res,2015,142:281-287
|
CSCD被引
12
次
|
|
|
|
11.
Wang X. Electrochemical determination of estrogenic compound bisphenol F in food packaging using carboxyl functionalized multi-walled carbon nanotubes modified glassy carbon electrode.
Food Chem,2014,157:464-469
|
CSCD被引
2
次
|
|
|
|
12.
Zheng Z X. Concise route to prepared Graphene-CNTs nanocomposite supported Pt nanoparticles and used as new electrode material for electrochemical sensing.
J Mol Catal A:Chem,2012(s363/364):481-488
|
CSCD被引
1
次
|
|
|
|
13.
Wang X. graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices.
Am Chem Soc,2011,27(17):11180-11186
|
CSCD被引
2
次
|
|
|
|
14.
Seo S D. 1D/2D carbon nanotube/graphene nanosheet composite anodes fabricated using electrophoretic assembly.
Ceram Int,2012,38(4):3017-3021
|
CSCD被引
4
次
|
|
|
|
15.
Lu X. A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors.
Electrochim Acta,2011,56(14):5115-5121
|
CSCD被引
8
次
|
|
|
|
16.
Meng F. Alkali-treated graphene oxide as a solid base catalyst:synthesis and electrochemical capacitance of graphene/carbon composite aerogels.
J Mater Chem,2011,21(21):18537-18539
|
CSCD被引
4
次
|
|
|
|
17.
Cao Q. Electrochemical determination of melamine using oligonucleotides modified gold electrodes.
Talanta,2009,80(2):484-488
|
CSCD被引
10
次
|
|
|
|
18.
Sun H W. Determination of melamine residue in liquid milk by capillary electrophoresis with solid-phase extraction.
J Chromatogr Sci,2010,48(10):848-853
|
CSCD被引
5
次
|
|
|
|
19.
Stankovich S. Graphene-based composite materials.
Nature,2011,442(7100):282-286
|
CSCD被引
652
次
|
|
|
|
20.
Novoselov K S. Room temperature quantum Hall effect in graphene.
Science,2007,315(5817):1379
|
CSCD被引
226
次
|
|
|
|
|