影像纹理窗口大小对山地阔叶林不同群落有效叶面积指数估测的影响
Effects of Image TextureWindow Sizes on LAIe Estimation of Different Communities in Montane Broad-leaved Forest
查看参考文献40篇
文摘
|
森林叶面积指数是陆地表面过程和地球系统气候模型的基本参数,更是森林结构的关键参数之一,已广泛应用于辐射、植物光合作用和降雨截流估测等方面。论文以川西南山地阔叶林5种不同群落类型为研究对象,基于地面调查的112个20 m×20 m样地和SPOT 5数据,运用5种图像处理技术,包括光谱反射率、植被指数、影像单波段纹理、简单波段比纹理和主成分纹理,提取相应影像信息,建立多元回归模型估算有效叶面积指数(LAIe)。结果表明:光谱反射率、单波段纹理参数和植被指数对LAIe估测能力相对较低,利用植被指数仅获得实测LAIe约65%的精度(R~2=0.65,RMSE=0.28 m~2/m~2);更为有效的是运用所有比值处理的纹理特征参数值来估测LAIe,可获得实测LAIe约74%的变异(R~2 =0.74,RMSE=0.20 m~2/m~2);改进最理想的是利用主成分处理建立的回归模型(R~2=0.85,RMSE=0.10 m~2/m~2)。不同群落的LAIe估测,整体上相应地优于研究区结果,其中栲群落决定系数R~2更是高达0.89(RMSE=0.07 m~2/m~2)。对于研究区阔叶林以窗口7×7、9×9比较成功,而各群落以窗口9×9较好。因此比值处理、主成分处理的纹理特征参数引入及高空间分辨率数据的使用,能显著提高LAIe估测精度。 |
其他语种文摘
|
Forest canopy leaf area index (LAI), a critical forest structural parameter, has been proven to be representative of canopy foliage content and crown structure and has been widely used for the estimation of radiation attenuation, plant photosynthesis, and precipitation interception among others. It is further a fundamental parameter in land surface processes and earth system climate models. Remote sensing methods offer an opportunity to improve in each of these requirements but are typically limited by the necessity for labor intensive validation and sparsely collected in situ measurements. This research investigates the potential of high resolution optical data from the SPOT 5 VGR sensor for LAIe estimation in five communities of montane broad- leaved forest in southwest Sichuan, using five different types of image processing techniques including 1) spectral reflectance, 2) commonly used vegetation indices, 3) texture parameters, 4) texture parameters of band ratio and 5) texture parameters of principal component(PC). Simple linear and stepwise multiple regression models were developed with LAIe data from 112 field plots and image parameters derived from these techniques. Results indicated that spectral reflectance, texture parameters of spectral bands and commonly used vegetation indices had relatively low potential for LAIe estimation, as only about 65% of the variability in the field data was explained by the model (R~2=0.65,RMSE=0.28 m~2/m~2) when using vegetation indices. However, the simple ratio of texture parameters were found to be more effective for LAIe estimation with explained variability of 74% (R~2=0.74,RMSE=0.20 m~2/ m~2). The result was further improved to R~2=0.85 (RMSE=0.10 m~2/m~2) when using the texture parameters of PCs. With regard to five communities, LAIe estimation was found to be more effective than in the whole study area. Castanopsis fargesii community was proven to have the best model (R~2 =0.89,RMSE=0.07 m~2/m~2). Generally, window sizes of 7 × 7 and 9 × 9 were more successful for the whole study area, and window size of 9 × 9 performed well for the five communities. The results suggest that the performance of LAIe estimation can be improved significantly by using the texture parameters of high resolution optical data, and further improvement can be obtained by using the texture parameters of PCs as this method combines the advantages of both the texture and the PCs. |
来源
|
自然资源学报
,2017,32(5):877-888 【核心库】
|
DOI
|
10.11849/zrzyxb.20151266
|
关键词
|
有效叶面积指数
;
纹理量测
;
影像处理技术
;
山地阔叶林
|
地址
|
四川农业大学林学院, 成都, 611130
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3037 |
学科
|
林业 |
基金
|
国家科技攻关计划重点项目
|
文献收藏号
|
CSCD:5984228
|
参考文献 共
40
共2页
|
1.
Liang S.
Quantitative Remote Sensing of Land Surfaces,2004:79-82
|
CSCD被引
2
次
|
|
|
|
2.
Bruniquel P V. Sensitivity of texture of high resolution images of forest to biophysical and acquisition parameters.
Remote Sensing of Environment,1998,65(1):61-85
|
CSCD被引
2
次
|
|
|
|
3.
Colombo R. Retrieval of leaf area index in different vegetation types using high resolution satellite data.
Remote Sensing of Environment,2003,86(1):120-131
|
CSCD被引
32
次
|
|
|
|
4.
Johansen K. Linking riparian vegetation spatial structure in Australian tropical savannas to ecosystem health indicators: Semi-variogram analysis of high spatial resolution satellite imagery.
Canadian Journal of Remote Sensing,2006,32(3):228-243
|
CSCD被引
2
次
|
|
|
|
5.
Pasher J. Modelling and mapping potential hooded warbler (Wilsonia citrina) habitat using remotely sensed imagery.
Remote Sensing of Environment,2007,107(3):471-483
|
CSCD被引
3
次
|
|
|
|
6.
Seed E D. Shadow brightness and shadow fraction relations with effective LAI: Importance of canopy closure and view angle in mixed wood boreal forest.
Canadian Journal of Remote Sensing,2003,29(3):324-335
|
CSCD被引
3
次
|
|
|
|
7.
Levesque J. Spatial analysis of radiometric fractions from high resolution multispectral imagery for modelling individual tree crown and forest canopy structure and health.
Remote Sensing of Environment,2003,84(4):589-602
|
CSCD被引
7
次
|
|
|
|
8.
Song C. Extracting forest canopy structure from spatial information of high resolution optical imagery: Tree crown size versus leaf area index.
International Journal of Remote Sensing,2008,29(19):5605-5622
|
CSCD被引
4
次
|
|
|
|
9.
Wulder M. High spatial resolution optical image texture for improved estimation of forest stand leaf area index.
Canadian Journal of Remote Sensing,1996,22(4):441-449
|
CSCD被引
5
次
|
|
|
|
10.
胡庭兴.
西南山地森林生态系统研究,2011:3-10
|
CSCD被引
3
次
|
|
|
|
11.
赵安玖. 西南山地阔叶混交林群落空间结构的多尺度特征.
生物多样性,2009,17(1):43-50
|
CSCD被引
8
次
|
|
|
|
12.
赵安玖. 基于不同空间插值模型的川西南山地常绿阔叶林叶面积指数估测.
自然资源学报,2014,29(4):598-609
|
CSCD被引
2
次
|
|
|
|
13.
赵安玖. 基于影像纹理特征的川西南山地常绿阔叶林有效叶面积指数的空间分析.
应用生态学报,2014,25(11):3237-3246
|
CSCD被引
6
次
|
|
|
|
14.
Chen J M. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands.
Agricultural and Forest Meteorology,1996,80:135-163
|
CSCD被引
59
次
|
|
|
|
15.
Qi J. A modified soil adjusted vegetation index.
Remote Sensing of Environment,1994,48(2):119-126
|
CSCD被引
362
次
|
|
|
|
16.
Goel N S. Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation.
Remote Sensing Reviews,1994,10(4):309-347
|
CSCD被引
24
次
|
|
|
|
17.
Kaufman Y J. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS.
IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):261-270
|
CSCD被引
155
次
|
|
|
|
18.
Kayitakire F. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery.
Remote Sensing of Environment,2006,102:390-401
|
CSCD被引
22
次
|
|
|
|
19.
Zheng D. Estimating aboveground biomass using Landsat 7 ETM+data across a managed landscape in northernWisconsin, USA.
Remote Sensing of Environment,2004,93(3):402-411
|
CSCD被引
58
次
|
|
|
|
20.
Douglas C M.
Introduction to Linear Regression Analysis, The Fourth Edition,2006:323-368
|
CSCD被引
1
次
|
|
|
|
|