帮助 关于我们

返回检索结果

基于softmax回归与图割法的脑肿瘤分割算法
A Brain Tumor Segmentation Method Based on Softmax Regression and Graph Cut

查看参考文献14篇

葛婷   牟宁   李黎  
文摘 从医学图像中分割脑肿瘤区域可以为脑肿瘤的诊断以及放射治疗提供帮助.但肿瘤区域的变化异常且边界非常模糊,因此自动或半自动地分割脑肿瘤非常困难.针对这一问题,本文结合softmax回归和图割法提出一种脑肿瘤分割算法.首先融合多序列核磁共振图像(MRI)并标记训练样本,再用softmax回归训练模型参数并计算每个点属于各个类别的概率,最后将概率融入到图割法中,用最小切/最大流方法得到最终分割结果.实验表明提出的方法可以更好地得到脑肿瘤的边界,并能较准确地分割出脑肿瘤区域.
其他语种文摘 Brain tumor segmentation from medical images is a clinical requirement for brain tumor diagnosis and radiotherapy planning. However, automatic or semi-automatic segmentation of the brain tumor is still a challenging task due to the high diversities and the ambiguous boundaries in the appearance of tumor tissue. To solve this problem,we propose a brain tumor segmentation method based on softmax regression and graph model. Firstly, the training samples are labeled from the multi-modality magnetic resonance images(MRI). Then, the softmax regression method is used to train the samples to obtain the parameters of this regression model and calculate the probabilities of each pixel belonging to different labels. At last, the probabilities calculated in the previous step are introduced to a graph-cut based model. This model is minimized with a min-cut /max-flow method to obtain the final tumor segmentation results. The experiment results demonstrate superior performance in brain tumor segmentation.
来源 电子学报 ,2017,45(3):644-649 【核心库】
DOI 10.3969/j.issn.0372-2112.2017.03.021
关键词 医学图像 ; 脑肿瘤 ; 核磁共振图像 ; 图像分割 ; softmax回归 ; 图割法 ; 最小切/最大流
地址

南京理工大学电子工程与光电技术学院, 江苏, 南京, 210094

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金
文献收藏号 CSCD:5981307

参考文献 共 14 共1页

1.  Jose A. Brain tumor segmentation using K-means clustering and fuzzy C-means algorithms and its area calculation. Brain,2014,2(3):3496-3501 CSCD被引 1    
2.  Dou W. A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images. Image and Vision Computing,2007,25(2):164-171 CSCD被引 2    
3.  Gooya A. Deformable registration of glioma images using EM algorithm and diffusion reaction modeling. Medical Imaging,IEEE Transactions on,2011,30(2):375-390 CSCD被引 2    
4.  Conson M. Automated delineation of brain structures in patients undergoing radiotherapy for primary brain tumors: From atlas to dose-volume histograms. Radiotherapy and Oncology,2014,112(3):326-331 CSCD被引 1    
5.  Thapaliya K. Level set method with automatic selective local statistics for brain tumor segmentation in MR images. Computerized Medical Imaging and Graphics,2013,37(7):522-537 CSCD被引 2    
6.  Rajendran A. Brain tumor segmentation on MRI brain images with fuzzy clustering and GVF snake model. International Journal of Computers Communications & Control,2014,7(3):530-539 CSCD被引 2    
7.  Kanas V G. A low cost approach for brain tumor segmentation based on intensity modeling and 3D random walker. Biomedical Signal Processing and Control,2015,22:19-30 CSCD被引 4    
8.  Boughattas N. Brain tumor segmentation from multiple MRI sequences using multiple kernel learning. Proceedings of IEEE International Conference on Image Processing 2014,2014:1887-1891 CSCD被引 1    
9.  Zhang N. Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Computer Vision and Image Understanding,2011,115(2):256-269 CSCD被引 7    
10.  Jiang J. 3D brain tumor segmentation in multimodal MR images based on learning population-and patient-specific feature sets. Computerized Medical Imaging and Graphics,2013,37(7):512-521 CSCD被引 4    
11.  Bishop C M. Pattern Recognition and Machine Learning,2006 CSCD被引 343    
12.  Boykov Y. Fast approximate energy minimization via graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2001,23(11):1222-1239 CSCD被引 386    
13.  Boykov Y. An experimental comparison of min-cut /max-flow algorithms for energy minimization in vision. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2004,26(9):1124-1137 CSCD被引 248    
14.  Brindle K. New approaches for imaging tumour responses to treatment. Nature Reviews Cancer,2008,8(2):94-107 CSCD被引 16    
引证文献 7

1 吴晓秋 室内场景的布局估计与目标区域提取算法 计算机工程,2018,44(8):257-262,267
CSCD被引 0 次

2 孔媛媛 基于Hough变换和GVF Snake模型的脑肿瘤分割方法 计算机应用研究,2018,35(11):3469-3471,3475
CSCD被引 4

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号