基于softmax回归与图割法的脑肿瘤分割算法
A Brain Tumor Segmentation Method Based on Softmax Regression and Graph Cut
查看参考文献14篇
文摘
|
从医学图像中分割脑肿瘤区域可以为脑肿瘤的诊断以及放射治疗提供帮助.但肿瘤区域的变化异常且边界非常模糊,因此自动或半自动地分割脑肿瘤非常困难.针对这一问题,本文结合softmax回归和图割法提出一种脑肿瘤分割算法.首先融合多序列核磁共振图像(MRI)并标记训练样本,再用softmax回归训练模型参数并计算每个点属于各个类别的概率,最后将概率融入到图割法中,用最小切/最大流方法得到最终分割结果.实验表明提出的方法可以更好地得到脑肿瘤的边界,并能较准确地分割出脑肿瘤区域. |
其他语种文摘
|
Brain tumor segmentation from medical images is a clinical requirement for brain tumor diagnosis and radiotherapy planning. However, automatic or semi-automatic segmentation of the brain tumor is still a challenging task due to the high diversities and the ambiguous boundaries in the appearance of tumor tissue. To solve this problem,we propose a brain tumor segmentation method based on softmax regression and graph model. Firstly, the training samples are labeled from the multi-modality magnetic resonance images(MRI). Then, the softmax regression method is used to train the samples to obtain the parameters of this regression model and calculate the probabilities of each pixel belonging to different labels. At last, the probabilities calculated in the previous step are introduced to a graph-cut based model. This model is minimized with a min-cut /max-flow method to obtain the final tumor segmentation results. The experiment results demonstrate superior performance in brain tumor segmentation. |
来源
|
电子学报
,2017,45(3):644-649 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2017.03.021
|
关键词
|
医学图像
;
脑肿瘤
;
核磁共振图像
;
图像分割
;
softmax回归
;
图割法
;
最小切/最大流
|
地址
|
南京理工大学电子工程与光电技术学院, 江苏, 南京, 210094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:5981307
|
参考文献 共
14
共1页
|
1.
Jose A. Brain tumor segmentation using K-means clustering and fuzzy C-means algorithms and its area calculation.
Brain,2014,2(3):3496-3501
|
CSCD被引
1
次
|
|
|
|
2.
Dou W. A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images.
Image and Vision Computing,2007,25(2):164-171
|
CSCD被引
2
次
|
|
|
|
3.
Gooya A. Deformable registration of glioma images using EM algorithm and diffusion reaction modeling.
Medical Imaging,IEEE Transactions on,2011,30(2):375-390
|
CSCD被引
2
次
|
|
|
|
4.
Conson M. Automated delineation of brain structures in patients undergoing radiotherapy for primary brain tumors: From atlas to dose-volume histograms.
Radiotherapy and Oncology,2014,112(3):326-331
|
CSCD被引
1
次
|
|
|
|
5.
Thapaliya K. Level set method with automatic selective local statistics for brain tumor segmentation in MR images.
Computerized Medical Imaging and Graphics,2013,37(7):522-537
|
CSCD被引
2
次
|
|
|
|
6.
Rajendran A. Brain tumor segmentation on MRI brain images with fuzzy clustering and GVF snake model.
International Journal of Computers Communications & Control,2014,7(3):530-539
|
CSCD被引
2
次
|
|
|
|
7.
Kanas V G. A low cost approach for brain tumor segmentation based on intensity modeling and 3D random walker.
Biomedical Signal Processing and Control,2015,22:19-30
|
CSCD被引
4
次
|
|
|
|
8.
Boughattas N. Brain tumor segmentation from multiple MRI sequences using multiple kernel learning.
Proceedings of IEEE International Conference on Image Processing 2014,2014:1887-1891
|
CSCD被引
1
次
|
|
|
|
9.
Zhang N. Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation.
Computer Vision and Image Understanding,2011,115(2):256-269
|
CSCD被引
7
次
|
|
|
|
10.
Jiang J. 3D brain tumor segmentation in multimodal MR images based on learning population-and patient-specific feature sets.
Computerized Medical Imaging and Graphics,2013,37(7):512-521
|
CSCD被引
4
次
|
|
|
|
11.
Bishop C M.
Pattern Recognition and Machine Learning,2006
|
CSCD被引
343
次
|
|
|
|
12.
Boykov Y. Fast approximate energy minimization via graph cuts.
Pattern Analysis and Machine Intelligence, IEEE Transactions on,2001,23(11):1222-1239
|
CSCD被引
386
次
|
|
|
|
13.
Boykov Y. An experimental comparison of min-cut /max-flow algorithms for energy minimization in vision.
Pattern Analysis and Machine Intelligence, IEEE Transactions on,2004,26(9):1124-1137
|
CSCD被引
248
次
|
|
|
|
14.
Brindle K. New approaches for imaging tumour responses to treatment.
Nature Reviews Cancer,2008,8(2):94-107
|
CSCD被引
16
次
|
|
|
|
|